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Introduction

As our title suggests, there are two aspects to the subject of this book. The first is
mathematical programming, the optimization of a function of many variables subject to
congtraints. The second is the AMPL modeling language, which we designed and imple-
mented to help people use computers to develop and apply mathematical programming
models.

We intend this book as an introduction both to mathematical programming and to
AMPL. For readers already familiar with mathematical programming, it can serve as a
user's guide and reference manua for the AMPL software. We assume no previous
knowledge of the subject, however, and hope that this book will also encourage the use of
mathematical programming models by those who are new to the field.

Mathematical programming

The term ‘*programming’’ was in use by 1940 to describe the planning or scheduling
of activities within alarge organization. *‘Programmers’”’ found that they could represent
the amount or level of each activity as a variable whose value was to be determined.
Then they could mathematically describe the restrictions inherent in the planning or
scheduling problem as a set of equations or inequalities involving the variables. A solu-
tion to all of these constraints would be considered an acceptable plan or schedule.

Experience soon showed that it was hard to model a complex operation ssimply by
specifying constraints. If there were too few constraints, many inferior solutions could
satisfy them; if there were too many constraints, desirable solutions were ruled out, or in
the worst case no solutions were possible. The success of programming ultimately
depended on a key insight that provided a way around this difficulty. One could specify,
in addition to the constraints, an objective: afunction of the variables, such as cost or pro-
fit, that could be used to decide whether one solution was better than another. Then it
didn’t matter that many different solutions satisfied the constraints — it was sufficient to
find one such solution that minimized or maximized the objective. The term mathemati-
cal programming came to be used to describe the minimization or maximization of an
objective function of many variables, subject to constraints on the variables.

XV
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In the development and application of mathematical programming, one specia case
stands out: that in which al the costs, requirements and other quantities of interest are
terms strictly proportional to the levels of the activities, or sums of such terms. In mathe-
matical terminology, the objective isalinear function, and the constraints are linear equa-
tions and inequalities. Such aproblem is called alinear program, and the process of set-
ting up such a problem and solving it is called linear programming. Linear programming
is particularly important because a wide variety of problems can be modeled as linear
programs, and because there are fast and reliable methods for solving linear programs
even with thousands of variables and constraints. The ideas of linear programming are
also important for analyzing and solving mathematical programming problems that are
not linear.

All useful methods for solving linear programs require a computer. Thus most of the
study of linear programming has taken place since the late 1940's, when it became clear
that computers would be available for scientific computing. The first successful compu-
tational method for linear programming, the simplex agorithm, was proposed at this
time, and was the subject of increasingly effective implementations over the next decade.
Coincidentaly, the development of computers gave rise to a now much more familiar
meaning for the term ** programming.”’

In spite of the broad applicability of linear programming, the linearity assumption is
sometimes too unrealistic. If instead some smooth nonlinear functions of the variables
are used in the objective or constraints, the problem is called a nonlinear program. Solv-
ing such a problem is harder, though in practice not impossibly so. Although the optimal
values of nonlinear functions have been a subject of study for over two centuries, compu-
tational methods for solving nonlinear programs in many variables were developed only
in recent decades, after the success of methods for linear programming. The field of
mathematical programming is thus aso known as large scale optimization, to distinguish
it from the classical topics of optimization in mathematical analysis.

The assumptions of linear programming also break down if some variables must take
on whole number, or integral, values. Then the problem is called integer programming,
and in general becomes much harder. Nevertheless, a combination of faster computers
and more sophisticated methods have made large integer programs increasingly tractable
in recent years.

The AMPL modeling language

Practical mathematical programming is seldom as simple as running some algorithmic
method on a computer and printing the optimal solution. The full sequence of eventsis
more like this:

e Formulate a model, the abstract system of variables, objectives, and constraints that
represent the general form of the problem to be solved.

e Collect datathat define a specific problem instance.

e Generate a specific objective function and constraint equations from the model and
data.
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¢ Solve the problem instance by running a program, or solver, to apply an agorithm

that finds optimal values of the variables.

e Anayzetheresults.

¢ Refinethe model and data as necessary, and repeat.

If people could deal with mathematical programs in the same way that solvers do, the for-
mulation and generation phases of modeling might be relatively straightforward. In real-
ity, however, there are many differences between the form in which human modelers
understand a problem and the form in which solver agorithms work with it. Conversion
from the ‘‘modeler's form’’ to the ‘‘agorithm’s form'’ is consequently a time-
consuming, costly, and often error-prone procedure.

In the special case of linear programming, the largest part of the algorithm’'s form is
the constraint coefficient matrix, which is the table of numbers that multiply al the vari-
ablesin al the constraints. Typically thisis avery sparse (mostly zero) matrix with any-
where from hundreds to hundreds of thousands of rows and columns, whose nonzero ele-
ments appear in intricate patterns. A computer program that produces a compact repre-
sentation of the coefficientsis called amatrix generator. Several programming languages
have been designed specifically for writing matrix generators, and standard computer pro-
gramming languages are al so often used.

Although matrix generators can successfully automate some of the work of tranglation
from modeler’s form to algorithm’s form, they remain difficult to debug and maintain.
One way around much of this difficulty lies in the use of a modeling language for mathe-
matical programming. A modeling language is designed to express the modeler’ sform in
a way that can serve as direct input to a computer system. Then the trandation to the
algorithm’s form can be performed entirely by computer, without the intermediate stage
of computer programming. Modeling languages can help to make mathematical pro-
gramming more economical and reliable; they are particularly advantageous for devel op-
ment of new models and for documentation of models that are subject to change.

Since there is more than one form that modelers use to express mathematical pro-
grams, there is more than one kind of modeling language. An algebraic modeling lan-
guage is a popular variety based on the use of traditional mathematical notation to
describe objective and constraint functions. An algebraic language provides computer-
readable equivalents of notations such as x; + y;, 2,-":1a”- Xj, X; 2 0, and j € Sthat would
be familiar to anyone who has studied algebra or calculus. Familiarity is one of the major
advantages of algebraic modeling languages; another is their applicability to a particu-
larly wide variety of linear, nonlinear and integer programming models.

While successful algorithms for mathematical programming first came into use in the
1950's, the development and distribution of algebraic modeling languages only began in
the 1970's. Since then, advances in computing and computer science have enabled such
languages to become steadily more efficient and general.

This book describes AMPL, an algebraic modeling language for mathematical pro-
gramming; it was designed and implemented by the authors around 1985, and has been
evolving ever since. AMPL is notable for the similarity of its arithmetic expressions to
customary algebraic notation, and for the generality and power of its set and subscripting
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expressions. AMPL aso extends algebraic notation to express common mathematical
programming structures such as network flow constraints and piecewise linearities.

AMPL offers an interactive command environment for setting up and solving mathe-
matical programming problems. A flexible interface enables several solvers to be avail-
able at once so a user can switch among solvers and select options that may improve
solver performance. Once optimal solutions have been found, they are automaticaly
translated back to the modeler’s form so that people can view and analyze them. All of
the general set and arithmetic expressions of the AMPL modeling language can aso be
used for displaying data and results; a variety of options are available to format data for
browsing, printing reports, or preparing input to other programs.

Through its emphasis on AMPL, this book differs considerably from the presentation
of modeling in standard mathematical programming texts. The approach taken by atypi-
cal textbook is still strongly influenced by the circumstances of 30 years ago, when a stu-
dent might be lucky to have the opportunity to solve a few small linear programs on any
actual computer. As encountered in such textbooks, mathematical programming often
appears to require only the conversion of a ‘‘word problem’” into a small system of
inequalities and an objective function, which are then presented to a ssmple optimization
package that prints a short listing of answers. While this can be a good approach for
introductory purposes, it is not workable for dealing with the hundreds or thousands of
variables and constraints that are found in most real-world mathematical programs.

The availability of an algebraic modeling language makes it possible to emphasize the
kinds of general models that can be used to describe large-scale optimization problems.
Each AMPL model in this book describes a whole class of mathematical programming
problems, whose members correspond to different choices of indexing sets and numerical
data. Even though we use relatively small data sets for illustration, the resulting prob-
lems tend to be larger than those of the typical textbook. More important, the same
approach, using still larger data sets, works just as well for mathematical programs of
realistic size and practical value.

We have not attempted to cover the optimization theory and algorithmic details that
comprise the greatest part of most mathematical programming texts. Thus, for readers
who want to study the whole field in some depth, this book is a complement to existing
textbooks, not a replacement. On the other hand, for those whose immediate concern is
to apply mathematical programming to a particular problem, the book can provide a use-
ful introduction on its own.

In addition, AMPL software is readily available for experiment: the AMPL web site,
www. anpl . com provides free downloadable ‘‘student”” versions of AMPL and repre-
sentative solvers that run on Windows, Unix/Linux, and Mac OSX. These can easily
handle problems of afew hundred variables and constraints, including all of the examples
in the book. Versions that support much larger problems and additional solvers are also
available from avariety of vendors; again, details may be found on the web site.
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Outline of the book

The second edition, like the first, is organized conceptually into four parts. Chapters
1 through 4 are atutorial introduction to models for linear programming:

1. Production Models: Maximizing Profits

2. Diet and Other Input Models: Minimizing Costs
3. Transportation and Assignment Models

4. Building Larger Models

These chapters are intended to get you started using AMPL as quickly as possible. They
include a brief review of linear programming and a discussion of a handful of simple
modeling ideas that underlie most large-scale optimization problems. They also illustrate
how to provide the data that convert a model into a specific problem instance, how to
solve a problem, and how to display the answers.

The next four chapters describe the fundamental components of an AMPL linear pro-
gramming model in detail, using more complex examples to examine major aspects of the
language systematically:

5. Simple Sets and Indexing

6. Compound Sets and Indexing

7. Parameters and Expressions

8. Linear Programs: Variables, Objectives and Constraints

We have tried to cover the most important features, so that these chapters can serve as a
general user’'s guide. Each feature is introduced by one or more examples, building on
previous examples wherever possible.

The following six chapters describe how to use AMPL in more sophisticated ways:

9. Specifying Data
10. Database Access
11. Modeling Commands
12. Display Commands
13. Command Scripts
14. Interactions with Solvers

The first two of these chapters explain how to provide the data values that define a spe-
cific instance of amodel; Chapter 9 describes AMPL’ s text file data format, while Chapter
10 presents features for access to information in relational database systems. Chapter 11
explains the commands that read models and data, and invoke solvers; Chapter 12 shows
how to display and save results. AMPL provides facilities for creating scripts of com-
mands, and for writing loops and conditional statements; these are covered in Chapter 13.
Chapter 14 goes into more detail on how to interact with solvers so as to make the best
use of their capabilities and the information they provide.

Finally, we turn to the rich variety of problems and applications beyond purely linear
models. The remaining chapters deal with six important special cases and generaliza-
tions:
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15. Network Linear Programs
16. Columnwise Formulations
17. Piecewise-Linear Programs
18. Nonlinear Programs

19. Complementarity Problems
20. Integer Linear Programs

Chapters 15 and 16 describe additional language features that help AMPL represent par-
ticular kinds of linear programs more naturally, and that may help to speed translation
and solution. The last four chapters cover generalizations that can help models to be
more redlistic than linear programs, although they can also make the resulting optimiza-
tion problems harder to solve.

Appendix A isthe AMPL reference manual; it describes all language features, includ-
ing some not mentioned elsewhere in the text. Bibliography and exercises may be found
in most of the chapters.

About the second edition

AMPL has evolved alot in ten years, but its core remains essentially unchanged, and
amost all of the models from the first edition work with the current program. Although
we have made substantial revisions throughout the text, much of the brand new material
is concentrated in the third part, where the original single chapter on the command envi-
ronment has been expanded into five chapters. In particular, database access, scripts and
programming constructs represent completely new material, and many additional AMPL
commands for examining models and accessing solver information have been added.

The first edition was written in 1992, just before the explosion in Internet and web
use, and while personal computers were still rather limited in their capabilities; the first
student versions of AMPL ran on DOS on tiny, slow machines, and were distributed on
floppy disks.

Today, the web site at www. anpl . comis the central source for all AMPL informa-
tion and software. Pages at this site cover al that you need to learn about and experiment
with optimization and the use of AMPL:

e Freeversionsof AMPL for avariety of operating systems.

e Freeversionsof several solversfor avariety of problem types.

e All of the model and data files used as examplesin this book.

The free software is fully functional, save that it can only handle problems of a few hun-
dred variables and constraints. Unrestricted commercia versions of AMPL and solvers
are available as well; see the web site for alist of vendors.

You can aso try AMPL without downloading any software, through browser inter-
faces at wwv. anpl . coml TRYAMPL and the NEOS Server (neos. nts. anl . gov).
The AMPL web site also provides information on graphical user interfaces and new AMPL
language features, which are under continuing devel opment.
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1

Production Models:
Maximizing Profits

As we stated in the Introduction, mathematical programming is a technique for solv-
ing certain kinds of problems — notably maximizing profits and minimizing costs —
subject to constraints on resources, capacities, supplies, demands, and tieRikés a
language for specifying such optimization problems. It provides an algebraic notation
that is very close to the way that you would describe a problem mathematically, so that it
is easy to convert from a familiar mathematical descripticxMBL.

We will concentrate initially on linear programming, which is the best known and eas-
iest case; other kinds of mathematical programming are taken up later in the book. This
chapter addresses one of the most common applications of linear programming: maxi-
mizing the profit of some operation, subject to constraints that limit what can be pro-
duced. Chapters 2 and 3 are devoted to two other equally common kinds of linear pro-
grams, and Chapter 4 shows how linear programming models can be replicated and com-
bined to produce truly large-scale problems. These chapters are written with the beginner
in mind, but experienced practitioners of mathematical programming should find them
useful as a quick introduction tovPL.

We begin with a linear program (or LP for short) in only two decision variables, moti-
vated by a mythical steelmaking operation. This will provide a quick review of linear
programming to refresh your memory if you already have some experience, or to help
you get started if you're just learning. We'll show how the same LP can be represented
as a general algebraic model of production, together with specific data. Then we’ll show
how to express several linear programming problemg4RL and how to rurAMPL and
a solver to produce a solution.

The separation of model and data is the key to describing more complex linear pro-
grams in a concise and understandable fashion. The final example of the chapter illus-
trates this by presenting several enhancements to the model.
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1.1 A two-variable linear program

An (extremely simplified) steel company must decide how to allocate next week’s
time on a rolling mill. The mill takes unfinished slabs of steel as input, and can produce
either of two semi-finished products, which we will call bands and coils. (The terminol-
ogy is not entirely standard; see the bibliography at the end of the chapter for some
accounts of realistic LP applications in steelmaking.) The mill's two products come off
the rolling line at different rates:

Tons per hour:  Bands 200
Coils 140

and they also have different profitabilities:

Profit per ton: Bands $25
Coils $30

To further complicate matters, the following weekly production amounts are the most that
can be justified in light of the currently booked orders:

Maximum tons: Bands 6,000
Coils 4,000

The question facing the company is as follows: If 40 hours of production time are avail-
able this week, how many tons of bands and how many tons of coils should be produced
to bring in the greatest total profit?

While we are given numeric values for production rates and per-unit profits, the tons
of bands and of coils to be produced are as yet unknown. These quantities are the deci-
sionvariables whose values we must determine so as to maximize profits. The purpose
of the linear program is to specify the profits and production limitations as explicit for-
mulas involving the variables, so that the desired values of the variables can be deter-
mined systematically.

In an algebraic statement of a linear program, it is customary to use a mathematical
shorthand for the variables. Thus we will wikg for the number of tons of bands to be
produced, an& for tons of coils. The total hours to produce all these tons is then given

by
(hours to make a ton of bandsXg + (hours to make a ton of coilg)X¢

This number cannot exceed the 40 hours available. Since hours per ton is the reciprocal
of the tons per hour given above, we haverstraint on the variables:

(1/200)Xg + (1/140)X < 40.
There are also production limits:

0< X <6000
0< X <4000
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In the statement of the problem above, the upper limits were specified, but the lower lim-
its were assumed — it was obvious that a negative production of bands or coils would be
meaningless. Dealing with a computer, however, it is necessary to be quite explicit.

By analogy with the formula for total hours, the total profit must be

(profit per ton of bands} Xg + (profit per ton of coilsk X¢

That is, our objective is to maximize 2& + 30 X. Putting this all together, we have
the following linear program:

Maximize 25Xg + 30X¢

Subjectto  (1/200)g + (1/140)X < 40
0< Xg <6000
0< Xc <4000

This is a very simple linear program, so we’ll solve it by hand in a couple of ways, and
then check the answer wittMPL.

First, by multiplying profit per ton times tons per hour, we can determine the profit
per hour of mill time for each product:

Profit per hour:  Bands $5,000
Coils $4,200

Bands are clearly a more profitable use of mill time, so to maximize profit we should pro-

duce as many bands as the production limit will allow — 6,000 tons, which takes 30

hours. Then we should use the remaining 10 hours to make coils — 1,400 tons in all.

The profit is $25 times 6,000 tons plus $30 times 1,400 tons, for a total of $192,000.
Alternatively, since there are only two variables, we can show the possibilities graphi-

cally. If Xg values are plotted along the horizontal axis, ¥pdsalues along the vertical

axis, each point represents a choice of values, or solution, for the decision variables:

6000-| Congtraints
Coils 4000
20004
feasibleregion
h « Hours
O T T T T T T T Bands

0 2000 4000 6000 8000



4 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

The horizontal line represents the production limit on coils, the vertical on bands. The
diagonal line is the constraint on hours; each point on that line represents a combination
of bands and coils that requires exactly 40 hours of production time, and any point down-
ward and to the left requires less than 40 hours.

The shaded region bounded by the axes and these three lines corresponds exactly to
the feasible solutions — those that satisfy all three constraints. Among all the feasible
solutions represented in this region, we seek the one that maximizes the profit.

For this problem, a line of slope —25/30 represents combinations that produce the
same profit; for example, in the figure below, the line from (0, 4500) to (5400, 0) repre-
sents combinations that yield $135,000 profit. Different profits give different but parallel
lines in the figure, with higher profits giving lines that are higher and further to the right.

6000 Profit

. «— $220K
Coils 40004

7 $192K—

2000
- $135K—

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Bands

0 2000 4000 6000 8000

If we combine these two plots, we can see the profit-maximizinggptomal , feasible
solution:

Coils 40004

0 T T T T T T T Bands
0 2000 4000 6000 8000
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The line segment for profit equal to $135,000 is partly within the feasible region; any
point on this line and within the region corresponds to a solution that achieves a profit of
$135,000. On the other hand, the line for $220,000 does not intersect the feasible region
at all; this tells us that there is no way to achieve a profit as high as $220,000. Viewed in
this way, solving the linear program reduces to answering the following question:
Among all profit lines that intersect the feasible region, which is highest and furthest to
the right? The answer is the middle line, which just touches the region at one of the cor-
ners. This point corresponds to 6,000 tons of bands and 1,400 tons of coils, and a profit
of $192,000 — the same as we found before.

1.2 The two-variable linear program in AMPL

Solving this linear program witAMPL can be as simple as typidg/PL’s descrip-
tion of the linear program,

var XB;

var XC,

maxi m ze Profit: 25 * XB + 30 * XC,

subject to Time: (1/200) * XB + (1/140) * XC <= 40;
subject to B limt: 0 <= XB <= 6000;

subject to Climt: 0 <= XC <= 4000;

into a file — call itpr od0. nod — and then typing a feaMPL commands:

anpl : nmodel prod0. nod;

anpl : sol ve;
M NOS 5.5: optimal solution found.
2 iterations, objective 192000

anpl : display XB, XC,

XB = 6000
XC = 1400
anpl: quit;

The invocation and appearance ofAPL session will depend on your operating envi-
ronment and interface, but you will always have the option of typiigL statements in
response to thanpl : prompt, until you leavaMPL by typingqui t . (Throughout the
book, material you type is showntimi s sl ant ed f ont .)

The AMPL linear program that you type into the file parallels the algebraic form in
every respect. It specifies the decision variables, defines the objective, and lists the con-
straints. It differs mainly in being somewhat more formal and regular, to facilitate com-
puter processing. Each variable is named yram statement, and each constraint by a
statement that begins witubj ect t o and a name lik&i ne orB_| i m t for the con-
straint. Multiplication requires an explic¢itoperator, and the relation is written<=.

The first command of youlMPL sessionjrodel pr odO. nod, reads the file into
AMPL, just as if you had typed it line-by-line atrpl : prompts. You then need only
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type sol ve to haveAMPL translate your linear program, send it to a linear program
solver, and return the answer. A final commatidspl ay, is used to show the optimal
values of the variables.

The messag® NCS 5. 5 directly following thesol ve command indicates that
AMPL used version 5.5 of a solver call®iNOS. We have usetMINOS and several
other solvers for the examples in this book. You may have a different collection of
solvers available on your computer, but any solver should give you the same optimal
objective value for a linear program. Often there is more than one solution that achieves
the optimal objective, however, in which case different solvers may report different opti-
mal values for the variables. (Commands for choosing and controlling solvers will be
explained in Section 11.2.)

Procedures for runningMPL can vary from one computer and operating system to
another. Details are provided in supplementary instructions that come with your version
of the AMPL software, rather than in this book. For subsequent examples, we will
assume thabMPL has been started up, and that you have received theaffipst:
prompt. If you are using a graphical interface AsPL, like one of those mentioned
briefly in Section 1.7, many of teMPL commands may have equivalent menu or dialog
entries. You will still have the option of typing the commands as shown in this book, but
you may have to open a “command window” of some kind to see the prompts.

1.3 A linear programming model

The simple approach employed so far in this chapter is helpful for understanding the
fundamentals of linear programming, but you can see that if our problem were only
slightly more realistic — a few more products, a few more constraints — it would be a
nuisance to write down and impossible to illustrate with pictures. And if the problem
were subject to frequent change, either in form or merely in the data values, it would be
hard to update as well.

If we are to progress beyond the very tiniest linear programs, we must adopt a more
general and concise way of expressing them. This is where mathematical notation comes
to the rescue. We can write a compact description of the general form of the problem,
which we call amodel, using algebraic notation for the objective and the constraints.
Figure 1-1 shows the production problem in algebraic notation.

Figure 1-1 is a symbolic linear programming model. Its components are fundamental
to all models:

o sets, like the products

e parameters, like the production and profit rates

e variables, whose values the solver is to determine
e anobjective, to be maximized or minimized

e constraintsthat the solution must satisfy.
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Given: P, a set of products
a; = tons per hour of produgtfor eachj e P
b = hours available at the mill
c; = profit per ton of produgt for each € P
u; = maximum tons of produgf for eachj € P

Define variablesX; = tons of produci to be made, for eagte P

Maximize: >.Ci X
jeP

Subject to: Y (Ma))X;<b
jeP

0 < X; <uj, foreacheP

Figure 1-1: Basic production model in algebraic form.

The model describes an infinite number of related optimization problems. If we provide
specific values for data, however, the model becomes a specific problerstance of

the model, that can be solved. Each different collection of data values defines a different
instance; the example in the previous section was one such instance.

It might seem that we have made things less rather than more concise, since our
model is longer than the original statement of the linear program in Section 1.1. Consider
what would happen, however, if the $ehad 42 products rather than 2. The linear pro-
gram would have 120 more data values (40 eaclafoc;, andu;); there would be 40
more variables, with new lower and upper limits for each; and there would be 40 more
terms in the objective and the hours constraint. Yet the abstract model, as shown above,
would be no different. Without this ability of a short model to describe a long linear pro-
gram, larger and more complex instances of linear programming would become impossi-
ble to deal with.

A mathematical model like this is thus usually the best compromise between brevity
and comprehension; and fortunately, it is easy to convert into a language that a computer
can process. From now on, we'll assume models are given in the algebraic form. As
always, reality is rarely so simple, so most models will have more sets, parameters and
variables, and more complicated objectives and constraints. In fact, in any real situation,
formulating a correct model and providing accurate data are by far the hardest tasks; solv-
ing a specific problem requires only a solver and enough computing power.

1.4 The linear programming model in AMPL

Now we can talk aboultMPL. The AMPL language is intentionally as close to the
mathematical form as it can get while still being easy to type on an ordinary keyboard and
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set P;

parama {j in P};
par am b;

paramc {j in P};
paramu {j in P};

var X {j in P};

mexi m ze Total _Profit: sum{j in P} c[j] * Xj];
subject to Time: sum{j in P} (1/a[j]) * Xj] <= b;
subject to Limit {j inP}: 0 <= Xj] <= u[j];

Figure 1-2: Basic production model inMPL (file pr od. nod).

to process by a program. There AMPL constructions for each of the basic components
listed above — sets, parameters, variables, objectives, and constraints — and ways to
write arithmetic expressions, sums over sets, and so on.

We first give amlAMPL model that resembles our algebraic model as much as possible,
and then present an improved version that takes better advantage of the language.

The basic model

For the basic production model of Figure 1-1, a direct transcriptiommr. would
look like Figure 1-2.
The keywordset declares a set name, as in

set P;

The members of s will be provided in separate data statements, which we’ll show in a
moment.
The keywordpar amdeclares a parameter, which may be a single scalar value, as in

par am b;

or a collection of values indexed by a set. Where algebraic notation says that “there is an
a; for eachj in P”, one writes inAMPL

parama {j in P};
which means tha is a collection of parameter values, one for each member of tRe set
Subscripts in algebraic notation are written with square bracketgmn, so an individ-

ual value likeg; is writtenal[ j | .
Thevar declaration

var X {j in P};

names a collection of variables, one for each membEr whose values the solver is to
determine.
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The objective is given by the declaration
maxi mize Total _Profit: sum{j in P} c[j] * Xj];

The namelot al _Prof i t is arbitrary; a name is required by the syntax, but any name
will do. The precedence of tlsaimoperator is lower than that 8f so the expression is
indeed a sum of products, as intended.

Finally, the constraints are given by

subject to Time: sum{j in P} (1/a[j]) * Xj] <= b;
subject to Linmit {j inP}: 0 <= X[j] <= u[j];

TheTi me constraint says that a certain sum over thé®saay not exceed the value of
parameteb. TheLi mit constraint is actually a family of constraints, one for each
membelj of P: eachX[ j ] is bounded by zero and the correspondipg] .

The construcfj i n P} is called anindexing expression. As you can see from our
example, indexing expressions are used not only in declaring parameters and variables,
but in any context where the algebraic model does something “foij @aéti. Thus the
Li m t constraints are declared

subject to Limt {j in P}

because we want to impose a different restriddicrs X[ j ] <=u[]j] for each different
productj in the seP. In the same way, the summation in the objective is written

sum{j in P} c[j] * X[j]

to indicate that the different terre$j ] * X[j ], for eachj inthe sefP, are to be added
together in computing the profit.

The layout of arAMPL model is quite free. Sets, parameters, and variables must be
declared before they are used but can otherwise appear in any order. Statements end with
semicolons and can be spaced and split across lines to enhance readability. Upper and
lower case letters are different,tsione, Ti me, andT| ME are three different names.

You have undoubtedly noticed several places where traditional mathematical notation
has been adapted WMPL to the limitations of normal keyboards and character sets.
AMPL uses the worduminstead ofX to express a summation, and rather thane for
set membership. Set specifications are enclosed in braced,jas mP} . Where math-
ematical notation uses adjacency to signify multiplicatiory i, AMPL uses the oper-
ator of most programming languages, and subscripts are denoted by bracke, so
become[j]*X[j].

You will find that the rest oAMPL is similar — a few more arithmetic operators, a
few more key words likeumandi n, and many more ways to specify indexing expres-
sions. Like any other computer languag®|PL has a precise grammar, but we won't
stress the rules too much here; most will become clear as we go along, and full details are
given in the reference manual, Appendix A.

Our original two-variable linear program is one of the many LPs that are instances of
the Figure 1-2 model. To specify it or any other such instance, we need to supply the
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set P := bands coils;

par am a c u :=
bands 200 25 6000
coils 140 30 4000 ;

paramb : = 40;

Figure 1-3: Production model data (filer od. dat ).

membership oP and the values of the various parameters. There is no standard way to
describe these data values in algebraic notation; usually some kind of informal tables are
used, such as the ones we showed earlieaMBL, there is a specific syntax for data
tables, which is sufficiently regular and unambiguous to be translated by a computer.
Figure 1-3 gives data for the basic production model in that forreetAstatement sup-

plies the membersdbands andcoi | s) of setP, and apar amtable gives the corre-
sponding values fa, ¢, andu. A simplepar amstatement gives the value for These

data statements, which are described in detail in Chapter 9, have a variety of options that
let you list or tabulate parameters in convenient ways.

An improved model

We could go on immediately to solve the linear program defined by Figures 1-2 and
1-3. Once we have written the modelKIPL, however, we need not feel constrained by
all the conventions of algebra, and we can instead consider changes that might make the
model easier to work with. Figures 1-4a and 1-4b show a possible “improved” version.
The short “mathematical” names for the sets, parameters and variables have been
replaced by longer, more meaningful ones. The indexing expressions have lgcome
i n PROD}, or just{ PROD} in those declarations that do not use the indexThe
bounds on variables have been placed within their declaration, rather than in a sepa-
rate constraint; analogous bounds have been placed on the parameters, to indicate the
ones that must be positive or nonnegative in any meaningful linear program derived from
the model.

Finally, comments have been added to help explain the model to a reader. Comments
begin with# and end at the end of the line. As in any programming language, judicious
use of meaningful names, comments and formatting helps to mdiRe models more
readable and understandable.

There are always many ways to describe a particular modahfn. It is left to the
modeler to pick the way that seems clearest or most convenient. Our earlier, mathemati-
cal approach is often preferred for working quickly with a familiar model. On the other
hand, the second version is more attractive for a model that will be maintained and modi-
fied by several people over months or years.
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set PROD; # products

paramrate {PROD} > O; # tons produced per hour
param avail >= 0; # hours avail able in week
param profit {PROD}; # profit per ton

param market {PROD} >= 0; # limt on tons sold in week
var Make {p in PROD} >= 0, <= market[p]; # tons produced
maxi m ze Total _Profit: sum{p in PROD} profit[p] * Make[p];
# Objective: total profits fromall products
subject to Time: sum{p in PROD} (1l/rate[p]) * Make[p] <= avail;
# Constraint: total of hours used by all
# products may not exceed hours avail abl e

Figure 1-4a: Steel production modes${ eel . nod).

set PROD : = bands coils;

par am rate profit market :=
bands 200 25 6000
coils 140 30 4000 ;
param avail := 40;

Figure 1-4b: Data for steel production modalt(eel . dat ).

If we put all of the model declarations into a file calltdeel . nod, and the data

specification into a filest eel . dat, then as before a solution can be found and dis-

played by typing just a few statements:

anpl : nodel steel . nod;

anpl : data steel.dat;

anpl : sol ve;

M NOS 5.5: optimal solution found.
2 iterations, objective 192000

anpl : di splay Make;

Make [*] : =
bands 6000

coils 1400

Thenodel anddat a commands each specify a file to be read, in this case the model

from st eel . nod, and the data frorat eel . dat. The use of two file-reading com-
mands encourages a clean separation of model from data.
Filenames can have any form recognized by your computer’s operating s4stem;

doesn’t check them for correctness. The filenames here and in the rest of the book refer

to example files that are available from &PL web site and othexMPL distributions.
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Once the model has been solved, we can show the optimal values of all of the vari-
ablesMake[ p], by typingdi spl ay Make. The output fromdi spl ay uses the same
formats asAMPL data input, so that there is only one set of formats to learn. [(The
indicates a variable or parameter with a single subscript. It is not strictly necessary for
input, sincevake is one-dimensional, buli spl ay prints it as a reminder.)

Catching errors

You will inevitably make some mistakes as you develop a mad@bL detects vari-
ous kinds of incorrect statements, which are reported in error messages following the
nodel , dat a or sol ve commands.

AMPL catches many errors as soon as the model is read. For example, if you use the
wrong syntax for the bounds in the declaration of the varigbles, you will receive an
error message like this, right after you enterthdel command:

steel .nmod, line 8 (offset 250):
syntax error
context: var Make {p in PROD} >>> 0 <<< <= Make[p] <= market[p];

If you inadvertently userake instead ofMake in an expression likgrofit[p] *
make[ p] , you will receive this message:

steel.nmod, line 11 (offset 339):
make is not defined
context: maximn ze Total Profit:
sum{p in PROD} profit[p] * >>> nake[p] <<< ;

In each case, the offending line is printed, with the approximate location of the error sur-
rounded by>>> and<<<.

Other common sources of error messages include a model component used before it is
declared, a missing semicolon at the end of a command, or a reserved werdhike
i n used in the wrong context. (Section A.1 contains a list of reserved words.) Syntax
errors in data statements are similarly reported right after you etié¢raacommand.

Errors in the data values are caught after you ggleve. If the number of hours
were given as —40, for instance, you would see:

anpl : nodel steel. nod;
anpl : data steel.dat;
anpl : sol ve;
Error executing "solve" command:
error processing param avail:
failed check: paramavail = -40
is not >= 0O;

It is good practice to include as many validity checks as possible in the model, so that
errors are caught at an early stage.

Despite your best efforts to formulate the model correctly and to include validity
checks on the data, sometimes a model that generates no error messages and that elicits
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an “optimal solution” report from the solver will nonetheless produce a clearly wrong or
meaningless solution. All of the production levels might be zero, for example, or the
product with a lower profit per hour may be produced at a higher volume. In cases like
these, you may have to spend some time reviewing your formulation before you discover
what is wrong.

Theexpand command can be helpful in your search for errors, by showing you how
AMPL instantiated your symbolic model. To see whislPL generated for the objective
Tot al _Profi t, for example, you could type:

anpl : expand Total _Profit;
maxi m ze Total Profit:
25*Make[ ' bands’] + 30*Make['coils’'];

This corresponds directly to our explicit formulation back in Section 1.1. Expanding the
constraint works similarly:

anpl : expand Ti ne;
subj ect to Tinme:
0. 005* Make[ ' bands’] + 0.00714286* Make[' coils’] <= 40;

Expressions in the symbolic model, such as the coefficlentat e[ p] in this exam-
ple, are evaluated before the expansion is displayed. You can expand the objective and
all of the constraints at once by typiegpand by itself.

The expressions above show that the symbolic mod#dlse[ j] expands to the
explicit variablesvake[ ’ bands’] andMake[ ' coils’]. You can use expressions
like these inAMPL commands, for example to expand a particular variable to see what
coefficients it has in the objective and constraints:

anpl : expand Make[’'coils’'];
Coefficients of Make[' coils']:
Ti me 0. 00714286
Total Profit 30

Either single quotes {§ or double quotes' ) may surround the subscript.

1.5 Adding lower bounds to the model

Once the model and data have been set up, it is a simple matter to change them and
then re-solve. Indeed, we would not expect to find an LP application in which the model
and data are prepared and solved just once, or even a few times. Most commonly, numer-
ous refinements are introduced as the model is developed, and changes to the data con-
tinue for as long as the model is used.

Let's conclude this chapter with a few examples of changes and refinements. These
examples also highlight some additional featuresMsL.
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Suppose first that we add another product, steel plate. The model stays the same, but
in the data we have to agd at e to the list of members for the 98ROD, and we have
to add a line of parameter values pdrat e:

set PROD : = bands coils plate;

par am rate profit market :=
bands 200 25 6000
coils 140 30 4000
pl ate 160 29 3500 ;
param avail := 40;

We put this version of the data in a file calltdeel 2. dat , and useAMPL as before to
get the solution:

anpl : nodel steel.nod; data steel 2.dat; solve
M NOS 5.5: optimal solution found.
2 iterations, objective 196400

anpl : di splay Make;

Make [*] : =
bands 6000
coils 0
plate 1600

Profits have increased compared to the two-variable version, but now it is best to produce
no coils at all! On closer examination, this result is not so surprising. Plate yields a pro-
fit of $4640 per hour, which is less than for bands but more than for coils. Thus plate is
produced to absorb the capacity not taken by bands; coils would be produced only if both
bands and plate reached their market limits before the available hours were exhausted.

In reality, a whole product line cannot be shut down solely to increase weekly profits.
The simplest way to reflect this in the model is to add lower bounds on the production
amounts, as shown in Figures 1-5a and 1-5b. We have declared a new collection of
parameters namedonmi t, to represent the lower bounds on production that are
imposed by sales commitments, and we have change@l to >= conmi t [ p] in the
declaration of the variablédake[ p] .

After these changes are made, we canAMBL again to get a more realistic solution:

anpl : nmodel steel 3. nod; data steel 3.dat; solve;
M NOS 5.5: optimal solution found.
2 iterations, objective 194828.5714

anpl : display comit, Make, market;

: comi t Make mar ket D=
bands 1000 6000 6000
coils 500 500 4000

pl ate 750 1028. 57 3500

For comparison, we have displayednmi t andnmar ket on either side of the actual
production,Make. As expected, after the commitments are met, it is most profitable to
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set PROD; # products

paramrate {PROD} > O; # produced tons per hour
param avail >= 0; # hours available in week
param profit {PROD}; # profit per ton

#

param commit {PROD} >= O; lower limt on tons sold in week
param market {PROD} >= 0; # upper limt on tons sold in week

var Make {p in PROD} >= commit[p], <= market[p]; # tons produced
maxi mize Total _Profit: sum{p in PROD} profit[p] * Make[p];

# (bjective: total profits fromall products
subject to Time: sum{p in PROD} (1l/rate[p]) * Make[p] <= avail;

# Constraint: total of hours used by all

# products may not exceed hours avail abl e

Figure 1-5a: Lower bounds on productiosf eel 3. nod).

set PROD : = bands coils plate;

par am rate profit commit nmarket :=
bands 200 25 1000 6000
coils 140 30 500 4000
pl ate 160 29 750 3500 ;
param avail := 40;

Figure 1-5b: Data for lower bounds on producticst el 3. dat ).

produce bands up to the market limit, and then to produce plate with the remaining avail-
able time.

1.6 Adding resource constraints to the model

Processing of steel slabs is not a single operation, but a series of steps that may pro-
ceed at different rates. To motivate a more general model, imagine that we divide pro-
duction into a reheat stage that can process the incoming slabs at 200 tons per hour, and a
rolling stage that makes bands, coils or plate at the rates previously given. Further imag-
ine that there are only 35 hours of reheat time, even though there are 40 hours of rolling
time.

To cover this kind of situation, we can add aSEAGE of production stages to our
model. The parameter and constraint declarations are modified accordingly, as shown in
Figure 1-6a. Since there is a potentially different number of hours available in each
stage, the parametavai | is now indexed oveSTACE. Since there is a potentially dif-
ferent production rate for each product in each stage, the pararagteis indexed over
both PROD and STAGE. In theTi me constraint, the production rate for prodyrcin
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set PROD; # products
set STACE, # stages

paramrate {PROD, STAGE} > 0; # tons per hour in each stage

param avai |l {STAGE} >= O; # hours avail abl e/ week in each stage
param profit {PROD}; # profit per ton

param commit {PROD} >= O; # lower limt on tons sold in week
par am mar ket {PROD} >= O; # upper limt on tons sold in week

var Make {p in PROD} >= commit[p], <= market[p]; # tons produced
maxi m ze Total Profit: sum{p in PROD} profit[p] * Make[p];
# bjective: total profits fromall products

subject to Tinme {s in STAGE}:
sum{p in PROD} (1l/rate[p,s]) * Make[p] <= avail[s];

# In each stage: total of hours used by all
# products may not exceed hours avail abl e

Figure 1-6a: Additional resource constraintst(eel 4. nod).

stages is referred to as at e[ p, s]; this isAMPL’s version of a doubly subscripted
entity likea, in algebraic notation.

The only other change is to the constraint declaration, where we no longer have a sin-
gle constraint, but a constraint for each stage, imposed by limited time available at that
stage. In algebraic notation, this might have been written

Subject to Y} (1/ay) X, < b, for eachse S
peP

Compare thé&MPL version:

subject to Tine {s in STACGE}:
sum{p in PROD} (1l/rate[p,s]) * Make[p] <= avail[s];

As in the other examples, this is a straightforward analogue, adapted to the requirements
of a computer language. In almost all models, most of the constraints are indexed collec-
tions like this one.

Sincer at e is now indexed over combinations of two indices, it requires a data table
all to itself, as in Figure 1-6b. The data file must also include the membership for the
new setSTAGE, and values cévai | for bothr eheat androl | .

After these changes are made, weAMeL to get another revised solution:

anpl : reset;

anpl : nodel steel 4.nod; data steel 4. dat; sol ve;
M NOS 5.5: optimal solution found.

4 iterations, objective 190071. 4286
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set PROD : = bands coils plate;
set STAGE := reheat roll;

paramrate: reheat roll :=

bands 200 200

coils 200 140

pl ate 200 160 ;
par am profit commit nmarket :=

bands 25 1000 6000

coils 30 500 4000

pl ate 29 750 3500 ;
param avail := reheat 35 roll 40 ;

Figure 1-6b: Data for additional resource constrairgs éel 4. dat ).

anpl : di splay Make.|b, Make, Make.ub, Make.rc;

: Make. | b Make Make. ub Make. rc D=
bands 1000 3357. 14 6000 5.32907e- 15

coils 500 500 4000 -1.85714

pl ate 750 3142. 86 3500 3.55271e-15

anpl : display Tine;

Time [*] :=
reheat 1800
roll 3200

Ther eset command erases the previous model so a new one can be read in.

At the end of the example above we have displayed the “marginal values” (also
called “dual values” or “shadow prices™) associated with fRiene constraints. The
marginal value of a constraint measures how much the value of the objective would
improve if the constraint were relaxed by a small amount. For example, here we would
expect that up to some point, additional reheat time would produce another $1800 of
extra profit per hour, and additional rolling time would produce $3200 per hour; decreas-
ing these times would decrease the profit correspondingly. In output commands like
di spl ay, AMPL interprets a constraint’'s name alone as referring to the associated mar-
ginal values.

We also display several quantities associated with the varishles. First there are
lower bounddvake. | b and upper boundghke. ub, which in this case are the same as
commit andnmar ket. We also show the “reduced cosWbake. r ¢, which has the
same meaning with respect to the bounds that the marginal values have with respect to
the constraints. Thus we see that, again up to some point, each increase of a ton in the
lower bound (or commitment) for coil production should reduce profits by about $1.86;
each one-ton decrease in the lower bound should improve profits by about $1.86. The
production levels for bands and plates are between their bounds, so their reduced costs are
essentially zero (recall that 15 means<10~1%), and changing their levels will have no
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&= ¥ AMPL/ava/Swing 0.1 ]

_File Edit Show Display Run Window Help _i
7 Model]Da[alSulue[Rese[]D!'SDIa\‘l(IHr|

866 Model (Users/bwk /javampl/steel.mod

ampl: display Make; set PROD; # products

param rate {PROD} > O; # tons produced per hour
o sl stssl . data steel.dat: el PaYem avail »= 0; # hours available in week
— == mod -mod; . i

param profit {PROD}; # profit per ton

2 variables, all linear
1 constraint, all linear; 2 nonzeros
1 linear objective; 2 nonzeros.

param market {PROD} >= 0; # limit on tons sold in week

var Make {p in PROD} >= 0, <= market[p]; # tons produced

MINOS 5.5: solve

MINOS 5.5: optimal solution found.
2 iterations, objective 192000

== 3 == display Make;

Make [*] 1=

maximize Total Profit: sum {p in PROD} profit[p] * Make[p];
# Objective: total profits from all products

subject to Time: sum {p in PROD} (l/rate[p])} * Make[p] <= a

bands 6000
?O:LS 1400 # Constraint: total of hours used by all A

# products may not exceed hours available [
C T ¢ y<

Figurel-7a: A Java-basedMPL graphical user interface (Macintosh).

effect. Bounds, marginal (or dual) values, reduced costs and other quantities associated
with variables and constraints are explored further in Section 12.5.

Comparing this session with our previous one, we see that the additional reheat time
restriction reduces profits by about $4750, and forces a substantial change in the optimal
solution: much higher production of plate and lower production of bands. Moreover, the
logic underlying the optimum is no longer so obvious. It is the difficulty of solving LPs
by logical reasoning alone that necessitates computer-based systemssgueh.as

1.7 AMPL interfaces

The examples that we have presented so far alAM&g’'s command interface: the
user types textual commands and the system responds with textual results. This is what
we will use throughout the book to illustra®PL’s capabilities. It permits access to all
of AMPL’s rich collection of features, and it will be the same in all environments. A
text-based interface is most natural for creating scripts of frequently used commands and
for writing programs that us&MPL’s programming constructs (the topics of Chapter 13).
And text commands are used in applications wheweL is a hidden or behind-the-
scenes part of some larger process.
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¢ AMPL/TK 0.9 (=] B3

file Edit View Send Help

_Na_w| Model | "Ih_!a_] Save | Solve | Blsplay[Pr_wJ MM|

ampl: | |display commit, Make, market, fmoppivT bwkisteeld.mod

Transcript _\ set PROD; & products
.}A param rate {PROD} > 0, # ﬁroduced tons per he
# == 3 solve; s==ss==== param avail »= 0; # hours available in w
) . param profit {PROD}; # profit per ton |
3 variables, all linear
1 constraint., sll linear: 3 nonzeros paran commit {PROD} >= 0; # lower limit on tons
1 linear objective; 3 nonzeros param market {PROD} >= 0; # upper limit on tons
MINOS 5.5: optimal solution found. var Make {p in PROD} >= commit([p], <= market[p];
2 iterations, objective 194828 5714
3 ? maximize Total Profit: sum {p in PROD} profit[p]
® == 4 cll.splay commit, Make, market; ==
I; - 001\%3 616[3133 maélagg (= # Objective: total profits from a]_|
an
coils 500 500 4000 /
plate 750 1028.57 3500 fnmoppiv7 wkisteel3.dat
l’ '\ set PROD := bands coils plate:
para: rate profit commit market .=
bands 200 25 1000 000
coils 140 30 500 4000
plate 160 29 750 3500 ;
param avail := 40;

el

Figure 1-7b: A Tcl/Tk-basedAMPL graphical user interface (Unix).

All that said, however, there are plenty of times where a graphical user interface can
make a program easier to use, helping novices to get started and casual or infrequent
users to recall detailsAMPL is no exception. Thus there are a variety of graphical inter-
faces forAMPL, loosely analogous to the “integrated development environments” for
conventional programming languages, thosgtPL’s environments are much less elabo-
rate. AnAMPL graphical interface typically provides a way to easily execute standard
commands, set options, invoke solvers, and display the results, often by pushing buttons
and selecting menu items instead of by typing commands.

Interfaces exist for standard operating system platforms. For example, Figure 1-7a
shows a simple interface based on Java that runs on Unix and Linux, Windows, and Mac-
intosh, presenting much the same appearance on each. (The Mac interface is shown.)
Figure 1-7b shows a similar interface based on Tcl/Tk, shown running on Unix but also
portable to Windows and Macintosh. Figure 1-7c shows another interface, created with
Visual Basic and running on Windows.

There are also web-based interfaces that provide client-server acceig®Itoor
solvers over network connections, and a number of application program interfaces
(API's) for calling AMPL from other programs. Th&MPL web site,ww. anpl . com
provides up to date information on all types of available interfaces.
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- AMPLWin o=l
File Edit View Send ‘Window Help
[ Mew | wodei[ vt | save [ sotve | pispiy | prew | et | s [ cmoo
<= Command interface HE=E = Model C:\amplwini\steeld mod MEE
L1 Sl display Make b, Make, Make.ub, Make.ic! set FROD;  # products =
I
@isplay Make 1b. Make. Make.ub, Make.ic; pebTIMES: Foatages
e | sssssssssssssess ;{ param rate {[PROD,STAGE} > O; # tons per hour in sach stage
solve: paran avail {STAGE} >= 0: # hours available/week in eac
param profit (PROD}: # profit per ton
3 variables, all linear
2 constraints, all linear; 6 nonzeros param commit (PROD} >= 0 # lower limit on tons sold i
1 linear objective; 3 nonzeros. param narket {PROD} >= 0; # upper limit on tons sold iy
MINOS 5.5: optimal solution Eound. -
4 iterations, objeccive 190071.4266 4 | ¥
T —— % Data C:\amplwinhstesld dat _[o]
display Make.lb, Make, Meke,ub, Nake.rc; set PROD := hands coils plate; -
Hake. lb Hake Hake . ub Hake. rc E set STAGE := rehest roll:
bands 1000 3357.14 6000 0
colls 500 500 4000 -1.85714 param rate: reheat roll :=
lplate 750 3l4z2.86 3500 0 bands 200 =00
¢ coils 200 140
plate 200 160 ;
paran: profic commit mAarkec :i=
- bands 25 1000 6000 =
| ] i 7 || 27

Figure1-7c: A Visual BasicAMPL graphical user interface (Windows).
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Exercises

1-1. This exercise starts with a two-variable linear program similar in structure to the one of Sec-
tions 1.1 and 1.2, but with a quite different story behind it.

(a) You are in charge of an advertising campaign for a new product, with a budget of $1 million.
You can advertise on TV or in magazines. One minute of TV time costs $20,000 and reaches 1.8
million potential customers; a magazine page costs $10,000 and reaches 1 million. You must sign
up for at least 10 minutes of TV time. How should you spend your budget to maximize your audi-
ence? Formulate the problemAnPL and solve it. Check the solution by hand using at least one

of the approaches described in Section 1.1.

(b) It takes creative talent to create effective advertising; in your organization, it takes three
person-weeks to create a magazine page, and one person-week to create a TV minute. You have
only 100 person-weeks available. Add this constraint to the model and determine how you should
now spend your budget.

(c) Radio advertising reaches a quarter million people per minute, costs $2,000 per minute, and
requires only 1 person-day of time. How does this medium affect your solutions?

(d) How does the solution change if you have to sign up for at least two magazine pages? A maxi-
mum of 120 minutes of radio?

1-2. The steel model of this chapter can be further modified to reflect various changes in produc-
tion requirements. For each part below, explain the modifications to Figures 1-6a and 1-6b that
would be required to achieve the desired changes. (Make each change separately, rather than accu-
mulating the changes from one part to the next.)

(a) How would you change the constraints so that total hours used by all productsjuaushe
total hours available for each stage? Solve the linear program with this change, and verify that you
get the same results. Explain why, in this case, there is no difference in the solution.

(b) How would you add to the model to restrict the total weight of all products to be less than a
new parametemax_wei ght ? Solve the linear program for a weight limit of 6500 tons, and
explain how this extra restriction changes the results.

(c) The incentive system for mill managers may tend to encourage them to produce as many tons as
possible. How would you change the objective function to maximize total tons? For the data of
our example, does this make a difference to the optimal solution?

(d) Suppose that instead of the lower bounds representedng t [ p] in our model, we want to
require that each product represent a certain share of the total tons produced. In the algebraic nota-
tion of Figure 1-1, this new constraint might be represented as

Xj = s; ), X, foreachje P
ke P

wheres; is the minimum share associated with projedtiow would you change themMPL model
to use this constraint in place of the lower bourwsmi t [ p] ? If the minimum shares are 0.4 for
bands and plate, and 0.1 for coils, what is the solution?

Verify that if you change the minimum shares to 0.5 for bands and plate, and 0.1 for coils, the lin-
ear program gives an optimal solution that produces nothing, at zero profit. Explain why this
makes sense.
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(e) Suppose there is an additional finishing stage for plates only, with a capacity of 20 hours and a
rate of 150 tons per hour. Explain how you could modify the data, without changing the model, to
incorporate this new stage.

1-3. This exercise deals with some issues of “sensitivity” in the steel models.

(a) For the linear program of Figures 1-5a and 1-5b, disflaxe andMake. r c. What do these
values tell you about the solution? (You may wish to review the explanation of marginal values
and reduced costs in Section 1.6.)

(b) Explain why the reheat time constraints added in Figure 1-6a result in a higher production of
plate and a lower production of bands.

(c) UseAMPL to verify the following statements: If the available reheat time is increased from 35

to 36 in the data of Figure 1-6b, then the profit goes up by $1800 as predicted in Section 1.6. If the
reheat time is further increased to 37, the profit goes up by another $1800. However, if the reheat
time is increased to 38, there is a smaller increase in the profit, and further increases past 38 have
no effect on the optimal profit at all. To change the reheat time to, say, 26 without changing and
reading the data file over again, type the command

let avail["reheat"] := 36;

By trying some other values of the reheat time, confirm that the profit increases by $1800 per extra
hour for any number of hours between 35 and/87 but that any increase in the reheat time
beyond 37914 hours doesn'’t give any further profit.

Draw a plot of the profit versus the number of reheat hours available, for:h8&rs

(d) To find the slope of the plot from (c) — profit versus reheat time available — at any particular
reheat time value, you need only look at the marginal value pE[ "r eheat "] . Using this
observation as an aid, extend your plot from (c) down to 25 hours of reheat time. Verify that the
slope of the plot remains at $6000 per hour from 25 hours down to less than 12 hours of reheat
time. Explain what happens when the available reheat time drops to 11 hours.

1-4. Here is a similar profit-maximizing model, but in a different context. An automobile manu-
facturer produces several kinds of cars. Each kind requires a certain amount of factory time per car
to produce, and yields a certain profit per car. A certain amount of factory time has been scheduled
for the next week, and it is desired to use all this time; but at least a certain number of each kind of
car must be manufactured to meet dealer requirements.

(a) What are the data values that define this problem? How would you declare the sets and param-
eter values for this problem &MPL? What are the decision variables, and how would you declare
them inAMPL?

(b) Assuming that the objective is to maximize total profit, how would you declare an objective in
AMPL for this problem? How would you declare the constraints?

(c) For purposes of experiment, suppose that there are three kinds of cars, known at the factory as
T, C andL, that 120 hours are available, and that the time per car, profit per car and dealer orders
for each kind of car are as follows:

Car time profit orders

T 1 200 10
C 2 500 20
L 3 700 15



SECTION 1.7 AMPL INTERFACES 23

How much of each car should be produced, and what is the maximum profit? You should find that
your solution specifies a fractional amount of one of the cars. As a practical matter, how could you
make use of this solution?

(d) If you maximize the total number of cars produced instead of the total profit, how many more
cars do you make? How much less profit?

(e) Each kind of car achieves a certain fuel efficiency, and the manufacturer is required by law to
maintain a certain “fleet average” efficiency. The fleet average is computed by multiplying the
efficiency of each kind of car times the number of that kind produced, summing all of the resulting
products, and dividing by the total of all cars produced. Extend A®®L model to contain a
minimum fleet average efficiency constraint. Rearrange the constraint as necessary to make it lin-
ear — no variables divided into other variables.

(f) Find the optimal solution for the case where dar€ andL achieve fuel efficiencies of 50, 30

and 20 miles/gallon, and the fleet average efficiency must be at least 35 miles/gallon. Explain how
this changes the production amounts and the total profit. Dealing with the fractional amounts in
the solution is not so easy in this case. What might you do?

If you had 10 more hours of production time, you could make more profit. Does the addition of the
fleet average efficiency constraint make the extra 10 hours more or less valuable?

(g9) Explain how you could further refine this model to account for different production stages that
have different numbers of hours available per stage, much as in the steel model of Section 1.6.

1-5. A group of young entrepreneurs earns a (temporarily) steady living by acquiring inadequately
supervised items from electronics stores and re-selling them. Each item has a street value, a
weight, and a volume; there are limits on the numbers of available items, and on the total weight
and volume that can be managed at one time.

(a) Formulate amMPL model that will help to determine how much of each item to pick up, to
maximize one day’s profit.

(b) Find a solution for the case given by the following table,

Value Weight Volume Available

TV 50 35 8 20
radio 15 5 1 50
camera 85 4 2 20
CD player 40 3 1 30
VCR 50 15 5 30
camcorder 120 20 4 15

and by limits of 500 pounds and 300 cubic feet.

(c) Suppose that it is desirable to acquire some of each item, so as to always have stock available
for re-sale. Suppose in addition that there are upper bounds on how many of each item you can
reasonably expect to sell. How would you add these conditions to the model?

(d) How could the group use the dual variables on the maximum-weight and maximum-volume
constraints to evaluate potential new partners for their activities?

(e) Through adverse circumstances the group has been reduced to only one member, who can carry
a mere 75 pounds and five cubic feet. What is the optimum strategy now? Given that this requires
a non-integral number of acquisitions, what is the best all-integer solution? (The integrality con-
straint converts this from a standard linear programming problem into a much harder problem
called a Knapsack Problem. See Chapter 20.)
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1-6. Profit-maximizing models of oil refining were one of the first applications of linear program-
ming. This exercise asks you to model a simplified version of the final stage of the refining pro-
cess.

A refinery breaks crude oil into some collection of intermediate materials, then blends these materi-
als back together into finished products. Given the volumes of intermediates that will be available,

we want to determine how to blend the intermediates so that the resulting products are most prof-
itable. The decision is made more complicated, however, by the existence of upper limits on cer-
tain attributes of the products, which must be respected in any feasible solution.

To formulate an algebraic linear programming model for this problem, we can start by defining sets
| of intermediates) of final products, an& of attributes. The relevant technological data may be
represented by

a; barrels of intermediateavailable, for eache |
rix units of attributek contributed per barrel of intermediatdor each € | andke K
U maximum allowed units of attributeper barrel of final produgt
for eachje Jandke K
d;; 1ifintermediate is allowed in the blend for produgtor O otherwise,
foreachiel andjeJ

and the economic data can be given by

C.

i revenue per barrel of prodyctfor eachj € J

There are two collections of decision variables:
Xij

Y

barrels of intermediatieused to make produgtfor each €| andje J
barrels of produgtmade, for eache J

The objective is to
maximize Zjejcj Y,

I

which is the sum of the revenues from the various products.

It remains to specify the constraints. The amount of each intermediate used to make products must
equal the amount available:

ZJ_EJX”- = a;, foreachiel.

The amount of a product made must equal the sum of amounts of the components blended into it:
Zislxij =Y, foreachje J.

For each product, the total attributes contributed by all intermediates must not exceed the total

allowed:

Yy (o TikXij < UY, for eachj e Jandke K.

Finally, we bound the variables as follows:

0 < Xj; < §;;a, foreachiel,je,

0 <Y, foreach e J.
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The upper bound oX;; assures that only the appropriate intermediates will be used in blending. If
intermediatei is not allowed in the blend for produgctas indicated by;; being zero, then the
upper bound oiX;; is zero; this ensures th¥f; cannot be positive in any solution. Otherwise, the
upper bound oiX;; is justa;, which has no effect since there are amlyparrels of intermediate
available for blending in any case.

(a) Transcribe this model taMPL, using the same names as in the algebraic form for the sets,
parameters and variables as much as possible.

(b) Re-write theAMPL model using meaningful names and comments, in the style of Figure 1-4a.
(c) In a representative small-scale instance of this model, the intermedia&RGafstraight run
gasoline) N (naphtha) RF (reformate),CG (cracked gasolineB (butane) Dl (distillate intermedi-
ate), G0 (gas oil), andRS (residuum). The final products aR& (premium gasoline)RG (regular
gasoline),D (distillate), andHF (heavy fuel oil). Finally, the attributes avep (vapor pressure),

oct (research octaneden (density), andul (sulfur).

The following amounts of the intermediates are scheduled to be available:

SRG N RF CG B DI &0 RS
21170 500 16140 4610 370 250 11600 25210

The intermediates that can be blended into each product, and the amounts of the attributes that they
possess, are as follows (with blank entries representing zeros):

Premium & regular gasoline Distillate Heavy fuel oil
vap oct den sul den sul
SRG 18.4 -78.5
N 6.54 -65.0 272 .283
RF 2.57 -104.0
CG 6.90 -93.7
B 199.2 -91.8
DI 292 .526
ce] 295 .353 295 .353
RS 343 4.70

The attribute limits and revenues/barrel for the products are:

vap oct den sul revenue
PG 122 -90 10.50
RG 127 -86 9.10
D 306 0.5 7.70
HF 352 35 6.65

Limits left blank, such as density for gasoline, are irrelevant and may be set to some relatively
large number.

Create a data file for yowtmPL model and determine the optimal blend and production amounts.

(d) It looks a little strange that the attribute amounts for research octane are negative. What is the
limit constraint for this attribute really saying?
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Diet and Other Input Models:
Minimizing Costs

To complement the profit-maximizing models of Chapter 1, we now consider linear
programming models in which the objective is to minimize costs. Where the constraints
of maximization models tend to be upper limits on the availability of resources, the con-
straints in minimization models are more likely to be lower limits on the amounts of cer-
tain ‘‘qualities’ in the solution.

Asan intuitive example of a cost-minimizing model, this chapter uses the well-known
“‘diet problem’’, which finds a mix of foods that satisfies requirements on the amounts of
various vitamins. We will again construct a small, explicit linear program, and then show
how a general model can be formulated for al linear programs of that kind. Since you
are now more familiar with AMPL, however, we will spend more time on AMPL and less
with algebraic notation.

After formulating the diet model, we will discuss a few changes that might make it
more realistic. The full power of this model, however, derives from its applicability to
many situations that have nothing to do with diets. Thus we conclude this chapter by
rewriting the model in a more general way, and discussing its application to blending,
economics, and scheduling.

2.1 Alinear program for the diet problem
Consider the problem of choosing prepared foods to meet certain nutritional require-

ments. Suppose that precooked dinners of the following kinds are available for the fol-
lowing prices per package:

27
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BEEF  beef $3.19
CHK chicken 2.59
FISH fish 2.29
HAM ham 2.89
MCH  macaroni & cheese 1.89
MTL meat |oaf 1.99
SPG spaghetti 1.99
TUR turkey 2.49

These dinners provide the following percentages, per package, of the minimum daily
regquirements for vitamins A, C, B1 and B2:

A C Bl B2

BEEF 60% 20% 10% 15%
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10

The problem is to find the cheapest combination of packages that will meet a week's
requirements — that is, at least 700% of the daily requirement for each nutrient.

Let us write Xgeee for the number of packages of beef dinner to be purchased, Xk
for the number of packages of chicken dinner, and so forth. Then the total cost of the diet
will be:

total cost =
3.19 Xgeer + 259 Xcpk +2.29 Xpgy + 2.89 Xpyam +
1.89 Xy + 1.99 Xy + 1.99 X + 2.49 X1ur

The total percentage of the vitamin A requirement is given by a similar formula, except
that Xgeee, Xcuk, and so forth are multiplied by the percentage per package instead of
the cost per package:

total percentage of vitamin A daily requirement met =
60 Xgeer + 8 Xcpk + 8 Xpyg +40 Xpyam +
15 XMCH +70 XMTL +25 XS:‘G + 60 XTUR

This amount needs to be greater than or equal to 700 percent. Thereis a similar formula
for each of the other vitamins, and each of these also needs to be > 700.
Putting these all together, we have the following linear program:
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Minimize
3.19 Xgeer + 259 Xcpk +2.29 Xpygy + 2.89 Xpgam +
1.89 Xpen +1.99 Xy + 1.99 X + 2.49 X1ur

Subject to
60 Xgeer + 8 Xchk *+ 8 Xpigy + 40 Xpyam +
15 XMCH +70 XMTL +25 XSDG + 60 XTUR > 700

20 Xgger + 0 Xcpk + 10 Xy +40 Xpyam +
35 Xmen + 30 Xy + 50 Xgpg + 20 Xqyg = 700

10 XBEEF +20 XCHK + 15 X|:|g_| +35 xHAM +
15 Xyen + 15 Xym + 25 Xgpg + 15 Xqyr 2 700

15 Xpeer + 20 Xcenk + 10 Xpygy + 10 Xyam +
15 XMCH + 15 XMTL + 15 XSDG + 10 XTUR > 700

Xgeer 2 0, Xchk 2 0, Xpgy 2 0, Xpam 2 0,
xMCH > 0, XMTL > 0, XSDG > 0, XTUR >0

At the end we have added the common-sense requirement that no fewer than zero pack-
ages of afood can be purchased.

As we first did with the production LP of Chapter 1, we can transcribe to a file, say
di et 0. nod, an AMPL statement of the explicit diet LP:

var Xbeef >= 0; var Xchk >= 0; var Xfish >= 0;
var Xham >= 0; var Xnth >= 0; var Xntl|l >= 0;
var Xspg >= 0; var Xtur >= 0;

mninmze cost:
3. 19* Xbeef + 2.59*Xchk + 2.29*Xfish + 2.89*Xham +
1.89*Xnth + 1.99*Xmt| + 1.99*Xspg + 2.49*Xtur;

subject to A
60* Xbeef + 8*Xchk + 8*Xfish + 40*Xham +
15*Xnch + 70*Xnt| + 25*Xspg + 60*Xtur >= 700;

subject to C
20* Xbeef + O0*Xchk + 10*Xfish + 40*Xham +
35*Xmch + 30*Xnt| + 50*Xspg + 20*Xtur >= 700;

subj ect to Bl:
10* Xbeef + 20*Xchk + 15*Xfish + 35*Xham +
15*Xnch + 15*Xnt| + 25*Xspg + 15*Xtur >= 700;

subj ect to B2:
15* Xbeef + 20*Xchk + 10*Xfish + 10*Xham +
15*Xnch + 15*Xnt| + 15*Xspg + 10*Xtur >= 700;

Again afew AMPL commands then suffice to read the file, send the LP to a solver, and
retrieve the results:
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anpl : nodel dietO. nod;

anpl : sol ve;

M NOS 5.5: optimal solution found.

6 iterations, objective 88.2

anpl : display Xbeef, Xchk, Xfi sh, Xham Xnch, Xnt |, Xspg, Xt ur;

Xbeef = 0

Xchk = 0

Xfish =0

Xham = 0

Xnth = 46. 6667

Xnt|l = -3.69159%e-18
Xspg = -4.05347e-16
Xtur =0

The optimal solution is found quickly, but it is hardly what we might have hoped for.
The cost is minimized by a monotonous diet of 462/3 packages of macaroni and cheese!
Y ou can check that this neatly provides 15% x 462/3 = 700% of the requirement for vita-
mins A, B1 and B2, and a lot more vitamin C than necessary; the cost is only $1.89 x
462/3 = $88.20. (The tiny negative values for meat loaf and spaghetti can be regarded as
zeros, like the tiny positive values we saw in Section 1.6.)

Y ou might guess that a better solution would be generated by requiring the amount of
each vitamin to equal 700% exactly. Such a requirement can easily be imposed by
changing each >= to = in the AMPL congtraints. If you go ahead and solve the changed
LP, you will find that the diet does indeed become more varied: approximately 19.5 pack-
ages of chicken, 16.3 of macaroni and cheese, and 4.3 of meat loaf. But since equalities
are more restrictive than inequalities, the cost goes up to $89.99.

2.2 An AMPL model for the diet problem

Clearly we will have to consider more extensive modifications to our linear program
in order to produce a diet that is even remotely acceptable. We will probably want to
change the sets of food and nutrients, as well as the nature of the constraints and bounds.
As in the production example of the previous chapter, this will be much easier to do if we
rely on ageneral model that can be coupled with avariety of specific datafiles.

This model deals with two things: nutrients and foods. Thus we begin an AMPL
model by declaring sets of each:

set NUTR;
set FOOD,

Next we need to specify the numbers required by the model. Certainly a positive cost
should be given for each food:

param cost {FOOD} > O;

We also specify that for each food there are lower and upper limits on the number of
packages in the diet:
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paramf_min {FOOD} >= 0;
paramf_max {j in FOOD} >= f _mn[j];

Notice that we need a dummy index j to run over FOOD in the declaration of f _nax, in
order to say that the maximum for each food must be greater than or equal to the corre-
sponding minimum.

To make thismodel somewhat more general than our examples so far, we a so specify
similar lower and upper limits on the amount of each nutrient in the diet:

param n_min {NUTR} >= O;
param n_max {i in NUTR} >= n_min[i];

Finally, for each combination of a nutrient and a food, we need a number that represents
the amount of the nutrient in one package of the food. You may recal from Chapter 1
that such a“*product’’ of two setsis written by listing them both:

param ant {NUTR, FOOD} >= 0;

References to this parameter require two indices. For example, ant [ i, j ] isthe amount
of nutrient i in apackage of food | .

The decision variables for this model are the numbers of packages to buy of the differ-
ent foods:

var Buy {j in FOOD} >=f_min[j], <= f_max[j];

The number of packages of some food j to be bought will be called Buy[j]; in any
acceptable solution it will haveto liebetweenf _nmin[j] andf _max[j].

The total cost of buying afood j isthe cost per package, cost [j ], times the num-
ber of packages, Buy[ j ] . The objective to be minimized is the sum of this product over
all foodsj :

m nimze Total _Cost: sum{j in FOOD} cost[j] * Buy[j];
Thism ni m ze declaration works the same asmaxi m ze did in Chapter 1.
Similarly, the amount of a nutrient i supplied by afood j isthe nutrient per package,

ant[i,j],timesthe number of packagesBuy|[j ] . Thetotal amount of nutrienti sup-
plied is the sum of this product over all foodsj :

sum{j in FOOD} ant[i,j] * Buy[j]

To complete the model, we need only specify that each such sum must lie between the
appropriate bounds. Our constraint declaration begins

subject to Diet {i in NUTR}:

to say that a constraint named Di et [ i ] must be imposed for each member i of NUTR.
The rest of the declaration gives the algebraic statement of the constraint for nutrient i :
the variables must satisfy

n_mnli] <= sum{j in FOOD} ant[i,j] * Buy[j] <= n_max[i]
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set NUTR;
set FOOD;

param cost {FOOD} > O;
param f _mn {FOOD} >= O;
paramf_max {j in FOOD} >=f _min[j];

param n_mn {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];

param ant {NUTR, FOOD} >= 0;
var Buy {j in FOOD} >=f_min[j], <= f_max[j];
m nimze Total _Cost: sum{j in FOOD} cost[j] * Buy[j];
subject to Diet {i in NUTR}:
n_mn[i] <= sum{j in FOOD} ant[i,j] * Buy[j] <= n_max[i];

Figure2-1: Diet model in AMPL (di et . nod).

A “‘doubleinequality’’ likethisisinterpreted in the obvious way: the value of the sumin
the middle must lie between n_mi n[ i ] and n_nmax[i]. The complete model is shown
in Figure 2-1.

2.3 Using the AMPL diet model

By specifying appropriate data, we can solve any of the linear programs that corre-
spond to the above model. Let's begin by using the data from the beginning of this chap-
ter, which is shown in AMPL format in Figure 2-2.

Thevauesof f _m n and n_mi n are as given originaly, while f _max and n_rmax
are set, for the time being, to large values that won't affect the optimal solution. In the
table for ant , the notation (tr) indicates that we have *‘transposed’’ the table so the
columns correspond to the first index (nutrients), and the rows to the second (foods).
Alternatively, we could have changed the model to say

param ant {FOOD, NUTR}

in which case we would have had to writeamt [ j , i ] inthe constraint.

Suppose that model and data are stored in the files di et. nod and di et . dat
respectively. Then AMPL is used as follows to read these files and to solve the resulting
linear program:

anpl : nodel diet. nod;
anpl : data diet.dat;
anmpl : sol ve;

M NOS 5.5: optimal solution found.
6 iterations, objective 88.2
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set NUTR := A Bl1 B2 C;
set FOOD : = BEEF CHK FI SH HAM MCH MIL SPG TUR ;
par am cost f_mn f_max :=
BEEF 3.19 0 100
CHK 2.59 0 100
FISH 2.29 0 100
HAM 2.89 0 100
MCH 1.89 0 100
MTL 1.99 0 100
SPG 1.99 0 100
TUR 2.49 0 100 ;
par am nmn n_mx :=
A 700 10000
C 700 10000
Bl 700 10000
B2 700 10000 ;
paramant (tr):
A C Bl B2 : =
BEEF 60 20 10 15
CHK 8 0 20 20
Fl SH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10

Figure 2-2:

Datafor diet model (di et . dat).

anpl :
Buy [*
BEEF
CHK
FI SH
HAM
MCH
MTL
SPG
TUR

di spl ay Buy;
] :=

[eleoNoNe)

46. 6667
-1.07823e-16
-1.32893e-16
0

Naturally, the result is the same as before.

Now suppose that we want to make the following enhancements. To promote variety,
the weekly diet must contain between 2 and 10 packages of each food. The amount of
sodium and calories in each package is aso given; total sodium must not exceed 40,000
mg, and total calories must be between 16,000 and 24,000. All of these changes can be
made through a few modifications to the data, as shown in Figure 2-3. Putting this new
datainfiledi et 2. dat , we can run AMPL again:
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set NUTR := A Bl B2 C NA CAL ;
set FOOD : = BEEF CHK FI SH HAM MCH MIL SPG TUR
par am cost f_mn f_max :=
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10
par am n_mn n_max :=
A 700 20000
C 700 20000
Bl 700 20000
B2 700 20000
NA 0 40000

CAL 16000 24000

param ant (tr):
A C Bl B2 NA CAL :=
BEEF 60 20 10 15 938 295
CHK 8 0 20 20 2180 770
Fl SH 8 10 15 10 945 440
HAM 40 40 35 10 278 430
MCH 15 35 15 15 1182 315
MTL 70 30 15 15 896 400
SPG 25 50 25 15 1329 370
TUR 60 20 15 10 1397 450

Figure2-3: Datafor enhanced diet model (di et 2. dat ).

anpl : nodel di et. nod;
anpl : data diet?2.dat;

anpl : sol ve;
M NOS 5.5: infeasible problem
9 iterations

The message i nf easi bl e pr obl emtells us that we have constrained the diet too
tightly; thereis no way that all of the restrictions can be satisfied.

AMPL lets us examine a variety of values produced by a solver asit attemptsto find a
solution. In Chapter 1, we used marginal (or dual) values to investigate the sensitivity of
an optimum solution to changes in the constraints. Here there is no optimum, but the
solver does return the last solution that it found while attempting to satisfy the con-
straints. We can look for the source of the infeasibility by displaying some values associ-
ated with this solution:
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anpl: display Diet.|lb, Diet.body, Diet.ub;
: Diet.lb Di et. body Diet.ub 1=
A 700 1993. 09 20000

B1 700 841. 091 20000
B2 700 601. 091 20000
C 700 1272.55 20000
CAL 16000 17222.9 24000

NA 0 40000 40000

For each nutrient, Di et . body is the sum of thetermsant[i,j] * Buy[j] in the
constraint Di et [i]. TheDiet. | b andDi et . ub valuesare the **lower bounds” and
“‘upper bounds’ onthesuminDi et [i] —inthiscase, just thevaluesn_ni n[i] and
n_max[i]. Wecan seethat the diet returned by the solver does not supply enough vita-
min B2, while the amount of sodium (NA) has reached its upper bound.

At this point, there are two obvious choices: we could require less B2 or we could
alow more sodium. If we try the latter, and relax the sodium limit to 50,000 mg, afeasi-
ble solution becomes possible:

anpl: let n_max["NA"] := 50000;

anpl : sol ve;

M NOS 5.5: optimal solution found.
5 iterations, objective 118.0594032

anpl : di spl ay Buy;

Buy [*] :=
BEEF 5.36061
CHK 2
FISH 2
HAM 10
MCH 10
MIL 10
SPG 9. 30605
TUR 2

Thisis at least a start toward a palatable diet, although we have to spend $118.06, com-
pared to $88.20 for the original, less restricted case. Clearly it would be easy, now that
the model is set up, to try many other possibilities. (Section 11.3 describes ways to
quickly change the data and re-solve.)

One till disappointing aspect of the solution is the need to buy 5.36061 packages of
beef, and 9.30605 of spaghetti. How can we find the best possible solution in terms of
whole packages? You might think that we could simply round the optimal values to
whole numbers — or integers, as they’re often called in the context of optimization —
but it is not so easy to do so in afeasible way. Using AMPL to modify the reported solu-
tion, we can observe that rounding up to 6 packages of beef and 10 of spaghetti, for
example, will violate the sodium limit:



36 DIET AND OTHER INPUT MODELS: MINIMIZING COSTS CHAPTER 2

anpl : |l et Buy["BEEF'] := 6;
anpl: let Buy["SPG'] := 10;

anpl: display Diet.lb, Diet.body, Diet.ub;
: Diet.Ib Diet.body Diet.ub 1=
A 700 2012 20000

Bl 700 1060 20000
B2 700 720 20000
C 700 1730 20000
CAL 16000 20240 24000
NA 0 51522 50000

(Thel et statement, which permits modifications of data, is described in Section 11.3.)
You can similarly check that rounding the solution down to 5 of beef and 9 of spaghetti
will provide insufficient vitamin B2. Rounding one up and the other down doesn’t work
either. With enough experimenting you can find a nearby all-integer solution that does
satisfy the constraints, but still you will have no guarantee that it is the least-cost al-
integer solution.

AMPL does provide for putting the integrality restriction directly into the declaration
of the variables:

var Buy {j in FOOD} integer >= f_mn[j], <= f_max[j];

Thiswill only help, however, if you use a solver that can deal with problems whose vari-
ables must be integers. For this, we turn to CPLEX, a solver that can handle these so-
called integer programs. If we add i nt eger to the declaration of variable Buy as
above, save the resulting moddl in thefiledi et i . nod, and add the higher sodium limit
todi et 2a. dat , then we can re-solve as follows:

anpl : reset;

anpl : nodel dieti.nod;

anpl : data diet?2a. dat;

anpl : option solver cplex;

anpl : sol ve;

CPLEX 8.0.0: optimal integer solution; objective 119.3
11 MP sinplex iterations

1 branch-and-bound nodes

anpl : display Buy;

e
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Sinceintegrality is an added constraint, it is no surprise that the best integer solution costs
about $1.24 more than the best ‘‘ continuous'’ one. But the difference between the diets
is unexpected; the amounts of 3 foods change, each by two or more packages. In general,
integrality and other ‘*discrete’’ restrictions make solutions for a model much harder to

find. We discussthisat length in Chapter 20.

2.4 Generalizations to blending, economics and scheduling

Y our personal experience probably suggests that diet models are not widely used by
people to choose their dinners. These models would be much better suited to situationsin
which packaging and personal preferences don’'t play such a prominent role — for exam-
ple, the blending of animal feed or perhaps food for college dining halls.

The diet model is a convenient, intuitive example of a linear programming formula-
tion that appears in many contexts. Suppose that we rewrite the model in a more general
way, as shown in Figure 2-4. The objects that were called foods and nutrients in the diet
model are now referred to more generically as *‘inputs’ and ‘‘outputs’. For each input
j, we must decide to use a quantity X[j] that lies between in_mn[j] and
in_max[j]; asaresult weincur acost equal tocost[j] * X[j], and we create
io[i,j] * Xj] unitsof each outputi . Our goal isto find the least-cost combination
of inputs that yields, for each output i, an amount between out _nmin[i] and
out _max[i].

In one common class of applications for this model, the inputs are raw materials to be
mixed together. The outputs are qualities of the resulting blend. The raw materials could
be the components of an animal feed, but they could equally well be the crude oil deriva-
tives that are blended to make gasoline, or the different kinds of coal that are mixed as
input to a coke oven. The qualities can be amounts of something (sodium or calories for
animal feed), or more complex measures (vapor pressure or octane rating for gasoline), or
even physical properties such as weight and volume.

In another well-known application, the inputs are production activities of some sector
of an economy, and the outputs are various products. Thei n_mi n andi n_nmax param-
eters are limits on the levels of the activities, while out _mi n and out _nax are regu-
lated by demands. Thus the goal isto find levels of the activities that meet demand at the
lowest cost. This interpretation is related to the concept of an economic equilibrium, as
we will explain in Chapter 19.

In still another, quite different application, the inputs are work schedules, and the out-
puts correspond to hours worked on certain days of a month. For a particular work
schedulej ,io[i,]] isthe number of hours that a person following schedule j will
work on day i (zero if none), cost[j] isthe monthly salary for a person following
schedulej , and X[ j ] isthe number of workers assigned that schedule. Under this inter-
pretation, the objective becomes the total cost of the monthly payroll, while the con-
straints say that for each day i , the total number of workers assigned to work that day
must lie between the limitsout _m n[i] and out _nmax[i]. The same approach can
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set | NPUT; # inputs
set QUTPUT; # out puts

param cost {INPUT} > O;
paramin_mn {INPUT} >= O;
paramin_max {j in INPUT} >= in_mn[j];

param out _nin { QUTPUT} >= O;
paramout _max {i in OUTPUT} >= out_min[i];

param i o {OQUTPUT, | NPUT} >= O;
var X {j in INPUT} >=in_mn[j], <= in_max[j];
m nimze Total _Cost: sum{j in INPUT} cost[j] * Xj];
subject to Qutputs {i in OUTPUT}:
out_mn[i] <= sum{j in INPUT} io[i,j] * X[j] <= out_max[i];

Figure2-4: Least-cost input model (bl end. nod).

be used in a variety of other scheduling contexts, where the hours, days or months are
replaced by other periods of time.

Although linear programming can be very useful in applications like these, we need to
keep in mind the assumptions that underlie the LP model. We have already mentioned
the ‘‘continuity’’ assumption whereby X[ j ] is allowed to take on any value between
in_mn[j] andi n_nax[]j]. Thismay be alot more reasonable for blending than for
scheduling.

As another example, in writing the objective as

sum{j in INPUT} cost[j] * Xj]

we are assuming ‘‘linearity of costs’’, that is, that the cost of an input is proportiona to
the amount of the input used, and that the total cost is the sum of the inputs’ individual
costs.

In writing the constraints as

out_mn[i] <= sum{j in INPUT} io[i,j] * X[j] <= out_nax[i]

we are also assuming that the yield of an output i from a particular input is proportional
to the amount of the input used, and that the total yield of an output i is the sum of the
yields from the individual inputs. This*‘linearity of yield'* assumption poses no problem
when the inputs are schedules, and the outputs are hours worked. But in the blending
example, linearity is a physical assumption about the nature of the raw materials and the
qualities, which may or may not hold. In early applications to refineries, for example, it
was recognized that the addition of lead as an input had a nonlinear effect on the quality
known as octane rating in the resulting blend.

AMPL makes it easy to express discrete or nonlinear models, but any departure from
continuity or linearity islikely to make an optimal solution much harder to obtain. At the
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least, it takes a more powerful solver to optimize the resulting mathematical programs.
Chapters 17 through 20 discuss these issues in more detail.
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Exercises

2-1. Suppose the foods listed below have calories, protein, calcium, vitamin A, and costs per
pound as shown. In what amounts should these food be purchased to meet at least the daily
requirements listed while minimizing the total cost? (This problem comes from George B.
Dantzig's classic book, Linear Programming and Extensions, page 118. We will take his word on
nutritional values, and for nostalgic reasons have left the prices as they were when the book was
published in 1963.)

bread meat potatoes cabbage milk gelatin  required

calories 1254 1457 318 46 309 1725 3000
protein 39 73 8 4 16 43 709.
calcium 418 41 a2 141 536 0 800 mg.
vitamin A 0 0 70 860 720 0 500 1.U.
cost/pound $0.30  $1.00 $0.05 $0.08  $0.23 $0.48

2-2. (a) You have been advised by your doctor to get more exercise, specificaly, to burn off at
least 2000 extra calories per week by some combination of walking, jogging, swimming, exercise-
machine, collaborative indoor recreation, and pushing yourself away from the table at mealtimes.
You have a limited tolerance for each activity in hoursweek; each expends a certain number of
calories per hour, as shown below:

walking jogging swimming machine indoor pushback
Calories 100 200 300 150 300 500
Tolerance 5 2 3 35 3 0.5

How should you divide your exercising among these activities to minimize the amount of time you
spend?
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(b) Suppose that you should also have some variety in your exercise — you must do at least one
hour of each of the first four exercises, but no more than four hours total of walking, jogging, and
exercise-machine. Solve the problem in this form.

2-3. (a) A manufacturer of soft drinks wishes to blend three sugars in approximately equal quanti-
ties to ensure uniformity of taste in a product. Suppliers only provide combinations of the sugars,
at varying costs/ton:

SUPPLIER
Sugar A B C D E F G
Cane 10% 10 20 30 40 20 60
Corn 30% 40 40 20 60 70 10
Beet 60% 50 40 50 0 10 30

Cost/ton $10 11 12 183 14 12 15

Formulate an AMPL model that minimizes the cost of supply while producing a blend that contains
52 tons of cane sugar, 56 tons of corn sugar, and 59 tons of beet sugar.

(b) The manufacturer feels that to ensure good relations with suppliersit is necessary to buy at least
10 tons from each. How does this change the model and the minimum-cost solution?

(c) Formulate an aternative to the model in (@) that finds the lowest-cost way to blend one ton of
supplies so that the amount of each sugar is between 30 and 37 percent of the total.

2-4. At the end of Chapter 1, we indicated how to interpret the marginal (or dual) values of con-
straints and the reduced costs of variablesin a production model. The same ideas can be applied to
this chapter’s diet model.

(a) Going back to the diet problem that was successfully solved in Section 2.3, we can display the
marginal values as follows:

anmpl : display Diet.lb,Diet.body, Di et. ub, D et

: Diet.Ib Diet.body Diet.ub Di et i =
A 700 1956. 29 20000 0
Bl 700 1036.26 20000 0
B2 700 700 20000 0. 404585
C 700 1682.51 20000 0
CAL 16000 19794. 6 24000 0
- 0. 00306905

NA 0 50000 50000

How can you interpret the two that are nonzero?
(b) For the same problem, thislisting gives the reduced costs:

anmpl : di splay Buy.|b, Buy, Buy. ub, Buy.rc

: Buy. b Buy Buy. ub Buy.rc 1=
BEEF 2 5. 36061 10 8.88178e- 16
CHK 2 2 10 1.18884
FI SH 2 2 10 1. 14441
HAM 2 10 10 -0. 302651
MCH 2 10 10 -0.551151
MTL 2 10 10 -1.3289
SPG 2 9. 30605 10 0
2 2 10 2.73162

TUR
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Based on this information, if you want to save money by eating more than 10 packages of some
food, which oneislikely to be your best choice?

2-5. A chain of fast-food restaurants operates 7 days a week, and requires the following minimum
number of kitchen employees from Monday through Sunday: 45, 45, 40, 50, 65, 35, 35. Each
employee is scheduled to work one weekend day (Saturday or Sunday) and four other days in a
week. The management wants to know the minimum total number of employees needed to satisfy
the requirements on every day.

(a) Set up and solve this problem as alinear program.

(b) In light of the discussion in Section 2.4, explain how this problem can be viewed as a special
case of the blending model in Figure 2-4.

2-6. The output of a paper mill consists of standard rolls 110 inches (110") wide, which are cut
into smaller rollsto meet orders. Thisweek there are orders for rolls of the following widths:

Width Orders

20" 48
45" 35
50" 24
55" 10
75" 8

The owner of the mill wants to know what cutting patterns to apply so asto fill the orders using the
smallest number of 110" rolls.

(a) A cutting pattern consists of a certain number of rolls of each width, such as two of 45" and one
of 20", or one of 50" and one of 55" (and 5" of waste). Suppose, to start with, that we consider
only the following six patterns:

Width 1 2 3 4 5 6
20" 3 1 0 2 1 3
45" 0 2 0 0 o0 1
50" 1 0 1 0 0 O
55" 0 0 1 1 0 O
75" o 0 o o0 1 O

How many rolls should be cut according to each pattern, to minimize the number of 110" rolls
used? Formulate and solve this problem as alinear program, assuming that the number of smaller
rolls produced need only be greater than or equal to the number ordered.

(b) Re-solve the problem, with the restriction that the number of rolls produced in each size must
be between 10% under and 40% over the number ordered.

(c) Find another pattern that, when added to those above, improves the optimal solution.

(d) All of the solutions above use fractional numbers of rolls. Can you find solutions that also sat-
isfy the constraints, but that cut a whole number of rolls in each pattern? How much does your
whole-number solution cause the objective function value to go up in each case? (See Chapter 20
for adiscussion of how to find optimal whole-number, or integer, solutions.)

2-7. In the refinery model of Exercise 1-6, the amount of premium gasoline to be produced is a
decision variable. Suppose instead that orders dictate a production of 42,000 barrels. The octane
rating of the product is permitted to be in the range of 89 to 91, and the vapor pressure in a range of
11.7 to 12.7. The five feedstocks that are blended to make premium gasoline have the following
production and/or purchase costs:
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SRG 9.57
N 8.87
RF 11.69
CG 10.88
B 6.75

Other data are as in Exercise 1-6. Construct a blending model and data file to represent this prob-
lem. Run them through AMPL to determine the optimal composition of the blend.

2-8. Recall that Figure 2-4 generalizes the diet model as a minimum-cost input selection model,
with constraints on the outputs.

(8 In the same way, generalize the production model of Figure 1-6a as a maximum-revenue output
selection model, with constraints on the inputs.

(b) The concept of an ‘‘input-output’’ model was one of the first applications of linear program-
ming in economic analysis. Such a model can be described in terms of a set A of activities and a
set M of materials. The decision variables are the levels X; > 0 at which the activities are run; they
have lower limits u;” and upper limits uj'.

Each activity | has either a revenue per unit ¢; >0, or a cost per unit represented by ¢; <0. Thus
total profit from al activitiesis ZjeACj X;, which is to be maximized.

Each unit of activity j produces an amount of material i given by a;; > 0, or consumes an amount
of material i represented by a;; <0. Thusif ), jEAainj is> 0 it isthe total production of material
i by all activities; if <0, it isthe total consumption of material i by all activities.

For each materia i, there is either an upper limit on the total production given by b >0, or alower
limit on the total consumption given by b <0. Similarly, there is either a lower limit on the total
production given by b; >0, or an upper limit on the total consumption given by b <O.

Write out aformulation of this model in AMPL.

(c) Explain how the minimum-cost input selection model and maximum-revenue output-selection
model can be viewed as special cases of the input-output model.
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Transportation and
Assignment Models

The linear programs in Chapters 1 and 2 are all examples of classical “activity” mod-
els. In such models the variables and constraints deal with distinctly different kinds of
activities — tons of steel produced versus hours of mill time used, or packages of food
bought versus percentages of nutrients supplied. To use these models you must supply
coefficients like tons per hour or percentages per package that convert a unit of activity in
the variables to the corresponding amount of activity in the constraints.

This chapter addresses a significantly different but equally common kind of model, in
which something is shipped or assigned, but not converted. The resulting constraints,
which reflect both limitations on availability and requirements for delivery, have an espe-
cially simple form.

We begin by describing the so-called transportation problem, in which a single good
is to be shipped from several origins to several destinations at minimum overall cost.
This problem gives rise to the simplest kind of linear program for minimum-cost flows.
We then generalize to a transportation model, an essential step if we are to manage all the
data, variables and constraints effectively.

As with the diet model, the power of the transportation model lies in its adaptability.
We continue by considering some other interpretations of the “flow” from origins to
destinations, and work through one particular interpretation in which the variables repre-
sent assignments rather than shipments.

The transportation model is only the most elementary kind of minimum-cost flow
model. More general models are often best expressed as networks, in which nodes —
some of which may be origins or destinations — are connected by arcs that carry flows of
some kind.AMPL offers convenient features for describing network flow models, includ-
ing node andar ¢ declarations that specify network structure directly. Network models
and the relevamMPL features are the topic of Chapter 15.

43
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3.1 Alinear program for the transportation problem

Suppose that we have decided (perhaps by the methods described in Chapter 1) to
produce steel coils at three mill locations, in the following amounts:

GARY Gary, Indiana 1400
CLEV Cleveland, Ohio 2600
PITT Pittsburgh, Pennsylvania 2900

The total of 6,900 tons must be shipped in various amounts to meet orders at seven loca-
tions of automobile factories:

FRA Framingham, Massachusetts 900
DET Detroit, Michigan 1200
LAN Lansing, Michigan 600
WIN Windsor, Ontario 400
STL St. Louis, Missouri 1700
FRE Fremont, California 1100
LAF Lafayette, Indiana 1000

We now have an optimization problem: What is the least expensive plan for shipping the
coils from mills to plants?
To answer the question, we need to compile a table of shipping costs per ton:

GARY CLEV PITT

FRA 39 27 24
DET 14 9 14
LAN 11 12 17
WIN 14 9 13

STL 16 26 28
FRE 82 95 99
LAF 8 17 20

Let GARY:FRA be the number of tons to be shipped freary to FRA, and similarly for
the other city pairs. Then the objective can be written as follows:
Minimize

39 GARY:FRA + 27 CLEV:FRA + 24PITT:FRA +

14GARY:DET+ 9CLEV:DET + 14PITT:DET +

11 GARY:LAN + 12CLEV:LAN + 17PITT.LAN +

14GARY:WIN + 9CLEV:WIN + 13PITT:WIN +

16 GARY:STL + 26 CLEV:STL + 28PITT:STL +

82 GARY.FRE+ 95CLEV:FRE + 99PITT:FRE +

8 GARYLAF + 17CLEV.LAF + 20PITT.LAF

There are 21 decision variables in all. Even a small transportation problem like this one
has a lot of variables, because there is one for each combination of mill and factory.
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By supplying each factory from the mill that can ship most cheaply to it, we could
achieve the lowest conceivable shipping cost. But we would then be shipping 900 tons
from PiTT, 1600 fromcLEV, and all the rest fromdARY — amounts quite inconsistent
with the production levels previously decided upon. We need to add a constraint that the
sum of the shipments fromaRY to the seven factories is equal to the production level of
1400:

GARY:FRA + GARY:DET + GARY:LAN + GARY:WIN +
GARY:STL + GARY:FRE + GARY:LAF = 1400

There are analogous constraints for the other two mills:

CLEV:FRA + CLEV:DET + CLEV:LAN + CLEV:WIN +
CLEV:STL + CLEV:.FRE + CLEV:LAF = 2600

PITT:FRA + PITT:DET + PITT.LAN + PITT:WIN +
PITT:STL + PITT:FRE + PITT;LAF = 2900

There also have to be constraints like these at the factories, to ensure that the amounts
shipped equal the amounts ordered.FR4, the sum of the shipments received from the
three mills must equal the 900 tons ordered:

GARY:FRA + CLEV:FRA + PITT:FRA = 900
And similarly for the other six factories:

GARY:DET + CLEV:DET + PITT:DET = 1200
GARY:LAN + CLEV:LAN + PITT:LAN = 600
GARY:WIN + CLEV:WIN + PITT:WIN = 400
GARY:STL + CLEV:STL + PITT:STL= 1700
GARY:FRE+ CLEV:FRE+ PITT:FRE= 1100
GARY:LAF + CLEV.LAF + PITT.LAF = 1000

We have ten constraints in all, one for each mill and one for each factory. If we add the
requirement that all variables be nonnegative, we have a complete linear program for the
transportation problem.

We won't even try showing what it would be like to type all of these constraints into
an AMPL model file. Clearly we want to set up a general model to deal with this prob-
lem.

3.2 An AMPL model for the transportation problem

Two fundamental sets of objects underlie the transportation problem: the sources or
origins (mills, in our example) and the destinations (factories). Thus we begimEie
model with a declaration of these two sets:
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set ORI G
set DEST,

There is a supply of something at each origin (tons of steel coils produced, in our case),
and a demand for the same thing at each destination (tons of coils ordenel).
defines nonnegative quantities like these wpitlr am statements indexed over a set; in

this case we add one extra refinememthack statement to test the data for validity:

param supply {ORIG >= 0;
param demand {DEST} >= O;

check: sum{i in ORIG supply[i] = sum{]j in DEST} demand[j];

The check statement says that the sum of the supplies has to equal the sum of the
demands. The way that our model is to be set up, there can’t possibly be any solutions
unless this condition is satisfied. By putting it itlaeck statement, we telAMPL to
test this condition after reading the data, and to issue an error message if it is violated.

For each combination of an origin and a destination, there is a transportation cost and
a variable representing the amount transported. Again, the ideas from previous chapters
are easily adapted to produce the appropAsteL statements:

param cost { ORI G DEST} >= 0;
var Trans {ORlI G DEST} >= 0;

For a particular origim and destinatiof, we shipTr ans[i, j] units fromi toj, ata
cost ofcost [i,j] per unit; the total cost for this pair is

cost[i,j] * Trans[i,]]
Adding over all pairs, we have the objective function:

m ni m ze Total Cost:
sum{i in ORIG | in DEST} cost[i,j] * Trans[i,]j];

which could also be written as
sum{j in DEST, i in ORIG cost[i,j] * Trans[i,]];
or as
sum{i in ORIG sum{j in DEST} cost[i,j] * Trans[i,j];
As long as you express the objective in some mathematically correcAmBy,will sort
out the terms.
It remains to specify the two collections of constraints, those at the origins and those

at the destinations. If we name these collecti®appl y and Denand, their declara-
tions will start as follows:

subject to Supply {i in ORIG:
subj ect to Demand {j in DEST}:

To complete th&uppl y constraint for origiri , we need to say that the sum of all ship-
ments out of is equal to the supply available. Since the amount shipped outooé
particular destinatiop is Tr ans[ i, j | , the amount shipped to all destinations must be
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set ORI G # origins
set DEST; # destinations

param supply {ORIG >= 0; # anmounts available at origins
param demand {DEST} >= O0; # amounts required at destinations

check: sum{i in ORIG supply[i] = sum{j in DEST} demand[j];
param cost { ORI G DEST} >= 0; # shipment costs per unit

var Trans {ORl G DEST} >= 0; # units to be shipped
m nimze Total _Cost:
sum{i in ORIG | in DEST} cost[i,j] * Trans[i,]];

subject to Supply {i in ORIG:

sum{j in DEST} Trans[i,j] = supply[il;
subj ect to Demand {j in DEST}:
sum{i in ORIG Trans[i,]j] = demand[j];

Figure 3-1a: Transportation modet ¢ ansp. nod).

sum{j in DEST} Trans[i,]j]

Since we have already defined a paramstgopl y indexed over origins, the amount
available at issuppl y[i] . Thus the constraint is

subject to Supply {i in ORIG:
sum {j in DEST} Trans[i,j] = supply[i];

(Note that the namesuppl y andSuppl y are unrelatedaMPL distinguishes upper and
lower case.) The other collection of constraints is much the same, except that the roles of
i in ORI G andj in DEST, are exchanged, and the sum eqdalsand][ j ] .

We can now present the complete transportation model, Figure 3-1la. As you might
have noticed, we have been consistent in using the indexun over the sédRI G, and
the indexj to run overDEST. This is not arAMPL requirement, but such a convention
makes it easier to read a model. You may name your own indices whatever you like, but
keep in mind that the scope of an index — the part of the model where it has the same
meaning — is to the end of the expression that defines it. ThusDethend constraint

subj ect to Denmand {j in DEST}:
sum{i in ORIG Trans[i,j] = demand[j];

the scope of runs to the semicolon at the end of the declaration, while the scape of
extends only through the summandans([i,j]. Sincei 's scope is insid¢’s scope,

these two indices must have different names. Also an index may not have the same name
as a set or other model component. Index scopes are discussed more fully, with further
examples, in Section 5.5.

Data values for the transportation model are shown in Figure 3-1b. To D&fgie
anddenmand, we have used an input format that permits a set and one or more parameters
indexed over it to be specified together. The set name is surrounded by colons. (We also
show some comments, which can appear among data statements just as in a model.)
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# defines set "ORIG' and param "supply"

param ORIG supply :

GARY 1400
CLEV 2600
PITT 2900 ;
param DEST: demand := # defines "DEST" and "demand"
FRA 900
DET 1200
LAN 600
W N 400
STL 1700
FRE 1100
LAF 1000 ;
param cost :

FRA DET LAN WN STL FRE LAF :=
GARY 39 14 11 14 16 82 8
CLEv 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20 ;

Figure 3-1b: Data for transportation moddiansp. dat).

If the model is stored in a filer ansp. nod and the data ihr ansp. dat , we can
solve the linear program and examine the output:

anpl : nmodel transp. nod;

anpl : data transp. dat;

anmpl : sol ve;

CPLEX 8.0.0: optinmal solution; objective 196200
12 dual sinplex iterations (0 in phase |)

anpl : display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT 1=

DET 1200 0 0
FRA 0 0 900
FRE 0 1100 0
LAF 400 300 300
LAN 600 0 0
STL 0 0 1700

W N 400 0 0

By displaying the variabl@ér ans, we see that most destinations are supplied from a sin-
gle mill, butcLev, GARY andpPITT all ship toLAF.
It is instructive to compare this solution to one given by another sSIMEPT.

anpl : option solver snopt;

anpl : sol ve;

SNOPT 6.1-1: Optimal solution found.
15 iterations, objective 196200
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anpl : display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT 1=

DET 1200 0 0
FRA 0 0 900
FRE 0 1100 0
LAF 400 0 600
LAN 600 0 0
STL 0 300 1400

W N 400 0 0

The minimum cost is still 196200, but it is achieved in a different way. Alternative opti-
mal solutions such as these are often exhibited by transportation problems, particularly
when the coefficients in the objective function are round numbers.

Unfortunately, there is no easy way to characterize all the optimal solutions. You
may be able to get a better choice of optimal solution by working with several objectives,
however, as we will illustrate in Section 8.3.

3.3 Other interpretations of the transportation model

As the name suggests, a transportation model is applicable whenever some material is
being shipped from a set of origins to a set of destinations. Given certain amounts avail-
able at the origins, and required at the destinations, the problem is to meet the require-
ments at a minimum shipping cost.

Viewed more broadly, transportation models do not have to be concerned with the
shipping of “materials”. They can be applied to the transportation of anything, provided
that the quantities available and required can be measured in some units, and that the
transportation cost per unit can be determined. They might be used to model the ship-
ments of automobiles to dealers, for example, or the movement of military personnel to
new assignments.

In an even broader view, transportation models need not deal with “shipping” at all.
The quantities at the origins may be merely associated with various destinations, while
the objective measures some value of the association that has nothing to do with actually
moving anything. Often the result is referred to as an “assignment” model.

As one particularly well-known example, consider a department that needs to assign
some number of people to an equal number of offices. The origins now represent individ-
ual people, and the destinations represent individual offices. Since each person is
assigned one office, and each office is occupied by one person, all of the parameter values
suppl y[i] anddenand[j] are 1. We interprefrans[i,j] as the “amount” of
personi that is assigned to office; that is, if Trans[i,j] is 1 then person will
occupy officg , while if Trans[ i, j ] is 0 then person will not occupy office .

What of the objective? One possibility is to ask people to rank the offices, giving
their first choice, second choice, and so forth. Then we caro®t[ i, j] be the rank
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set ORIG :

Coul | ard Daskin Hazen Hopp |ravani Linetsky
Mehrotra Nel son Smilowitz Tamhane Wiite ;

set DEST := Cl18 C138 C140 C246 C250 C251 D237 D239 D241 M233 M239;
param supply default 1 ;

param demand default 1 ;

par am cost :
Cl118 C138 C140 C246 C250 C251 D237 D239 D241 M33 MR39 : =
Coul l ard 6 9 8 7 11 10 4 5 3 2 1
Daski n 11 8 7 6 9 10 1 5 4 2 3
Hazen 9 10 11 1 5 6 2 7 8 3 4
Hopp 11 9 8 10 6 5 1 7 4 2 3
I ravani 3 2 8 9 10 11 1 5 4 6 7
Li netsky 11 9 10 5 3 4 6 7 8 1 2
Mehrotra 6 11 10 9 8 7 1 2 5 4 3
Nel son 11 5 4 6 7 8 1 9 10 2 3
Smlowitz 11 9 10 8 6 5 7 3 4 1 2
Tamhane 5 6 9 8 4 3 7 10 11 2 1
Wiite 11 9 8 4 6 5 3 10 7 2 1 ;

Figure 3-2: Data for assignment probleraqsi gn. dat ).

that personi gives to officej . This convention lets each objective function term
cost[i,j] * Trans[i,]] representthe preference of persdior officej , if person

i is assigned to officg (Trans[i, ] equals 1), or zero if persanis not assigned to
officej (Trans[i,j] equals 0). Since the objective is the sum of all these terms, it
must equal the sum of all the nonzero terms, which is the sum of everyone’s rankings for
the offices to which they were assigned. By minimizing this sum, we can hope to find an
assignment that will please a lot of people.

To use the transportation model for this purpose, we need only supply the appropriate
data. Figure 3-2 is one example, with 11 people to be assigned to 11 offices. The
def aul t option has been used to set all shegppl y anddermand values to 1 without
typing all the 1's. If we store this data setimsi gn. dat , we can use it with the trans-
portation model that we already have:

anpl : nodel transp. nod;

anpl : data assign. dat;

anpl : sol ve;

CPLEX 8.0.0: optinmal solution; objective 28
24 dual sinmplex iterations (0 in phase I)

By setting the optiommi t _zer o_r ows to 1, we can print just the nonzero terms in the
objective. (Options for displaying results are presented in Chapter 12.) This listing tells
us each person’s assigned room and his or her preference for it:
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anpl: option omt_zero_rows 1;
anmpl: display {i in ORIG | in DEST} cost[i,j] * Trans[i,j];
cost[i,j]*Trans[i,j] :=

Coul lard C118
Daski n D241
Hazen C246
Hopp D237

I ravani C138
Li netsky C250
Mehrotra D239
Nel son C140
Smilowitz M233
Tamhane C251
Wite V239

PWRPRRANWNRPERLMO

The solution is reasonably successful, although it does assign two fourth choices and one
sixth choice.

Itis not hard to see that when all teppl y[i ] anddemand[j ] values are 1, any
Trans[i,j] satisfying all the constraints must be between 0 and 1. But how did we
know that everylr ans[i,j] would equal either O or 1 in the optimal solution, rather
than, say;.? We were able to rely on a special property of transportation models, which
guarantees that as long as all supply and demand values are integers, and all lower and
upper bounds on the variables are integers, there will be an optimal solution that is
entirely integral. Moreover, we used a solver that always finds one of these integral solu-
tions. But don't let this favorable result mislead you into assuming that integrality can be
assured in all other circumstances; even in examples that seem to be much like the trans-
portation model, finding integral solutions can require a special solver, and a lot more
work. Chapter 20 discusses issues of integrality at length.

A problem of assigning 100 people to 100 rooms has ten thousand variables; assign-
ing 1000 people to 1000 rooms yields a million variables. In applications on this scale,
however, most of the assignments can be ruled out in advance, so that the number of
actual decision variables is not too large. After looking at an initial solution, you may
want to rule out some more assignments — in our example, perhaps no assignment to
lower than fifth choice should be allowed — or you may want to force some assignments
to be made a certain way, in order to see how the rest could be done optimally. These sit-
uations require models that can deal with subsets of pairs (of people and offices, or ori-
gins and destinations) in a direct waMPL’s features for describing pairs and other
“compound” objects are the subject of Chapter 6.
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Exercises

3-1. This transportation model, which deals with finding a least cost shipping schedule, comes
from Dantzig’'sLinear Programming and Extensions. A company has plants in Seattle and San

Diego, with capacities 350 and 600 cases per week respectively. It has customers in New York,
Chicago, and Topeka, which order 325, 300, and 275 cases per week. The distances involved are:

New York Chicago Topeka

Seattle 2500 1700 1800
San Diego 2500 1800 1400

The shipping cost is $90 per case per thousand miles. Formulate this masi@iLirand solve it
to determine the minimum cost and the amounts to be shipped.

3-2. A small manufacturing operation produces six kinds of parts, using three machines. For the
coming month, a certain number of each part is needed, and a certain number of parts can be
accommodated on each machine; to complicate matters, it does not cost the same amount to make
the same part on different machines. Specifically, the costs and related values are as follows:

Part
Machine 1 2 3 4 5 6 Capacity
1 3 3 2 5 2 1 80
2 4 1 1 2 2 1 30
3 2 2 5 1 1 2 160

Required 10 40 60 20 20 30

(a) Using the model in Figure 3-1a, create a file of data statements for this problem; treat the
machines as the origins, and the parts as the destinations. How many of each part should be pro-
duced on each machine, so as to minimize total cost?

(b) If the capacity of machine 2 is increased to 50, the manufacturer may be able to reduce the total
cost of production somewhat. What small change to the model is necessary to analyze this situa-
tion? How much is the total cost reduced, and in what respects does the production plan change?
(c) Now suppose that the capacities are given in hours, rather than in numbers of parts, and that it
takes a somewhat different number of hours to make the same part on different machines:

Part
Machine 1 2 3 4 5 6 Capacity
1 1.3 1.3 1.2 1.5 1.2 1.1 50
2 1.4 1.1 1.1 1.2 1.2 1.1 90
3 1.2 1.2 1.5 1.1 1.1 1.2 175

Modify the supply constraint so that it limits total time of production at each “origin” rather than
the total quantity of production. How is the new optimal solution different? On which machines is
all available time used?

(d) Solve the preceding problem again, but with the objective function changed to minimize total
machine-hours rather than total cost.

3-3. This exercise deals with generalizations of the transportation model and data of Figure 3-1.

(a) Add two parametersuppl y_pct anddenand_pct, to represent the maximum fraction of
a mill's supply that may be sent to any one factory, and the maximum fraction of a factory’s
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demand that may be satisfied by any one mill. Incorporate these parameters into the model of Fig-
ure 3-1a.

Solve for the case in which no more than 50% of a mill’s supply may be sent to any one factory,
and no more than 85% of a factory’s demand may be satisfied by any one mill. How does this
change the minimum cost and the optimal amounts shipped?

(b) Suppose that the rolling mills do not produce their own slabs, but instead obtain slabs from two
other plants, where the following numbers of tons are to be made available:

M DTWN 2700
HAMLTN 4200

The cost per ton of shipping a slab from a plant to a mill is as follows:

GARY CLEV PITT
M DTWN 12 8 17
HAMLTN 10 5 13

All other data values are the same as before, butswiipl y_pct reinterpreted as the maximum
fraction of a plant’s supply that may be sent to any one mill.

Formulate this situation as #&mPL model. You will need two indexed collections of variables,
one for the shipments from plants to mills, and one for the shipments from mills to factories. Ship-
ments from each mill will have to equal supply, and shipments to each factory will have to equal
demand as before; also, shipments out of each mill will have to equal shipments in.

Solve the resulting linear program. What are the shipment amounts in the minimum-cost solution?

(c) In addition to the differences in shipping costs, there may be different costs of production at the
plants and mills. Explain how production costs could be incorporated into the model.

(d) When slabs are rolled, some fraction of the steel is lost as scrap. Assuming that this fraction
may be different at each mill, revise the model to take scrap loss into account.

(e) In reality, scrap is not really lost, but is sold for recycling. Make a further change to the model
to account for the value of the scrap produced at each mill.

3-4. This exercise considers variations on the assignment problem introduced in Section 3.3.

(a) Try reordering the list of members@EST in the data (Figure 3-2), and solving again. Find a
reordering that causes your solver to report a different optimal assignment.

(b) An assignment that gives even one person a very low-ranked office may be unacceptable, even
if the total of the rankings is optimized. In particular, our solution gives one individual her sixth
choice; to rule this out, change all preferences of six or larger in the cost data to 99, so that they
will become very unattractive. (You'll learn more convenient features for doing the same thing in
later chapters, but this crude approach will work for now.) Solve the assignment problem again,
and verify that the result is an equally good assignment in which no one gets worse than fifth
choice.

Now apply the same approach to try to give everyone no worse than fourth choice. What do you
find?

(c) Suppose now that offices C118, C250 and C251 become unavailable, and you have to put two
people each into C138, C140 and C246. Add 20 to each ranking for these three offices, to reflect
the fact that anyone would prefer a private office to a shared one. What other modifications to the
model and data would be necessary to handle this situation? What optimal assignment do you get?
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(d) Some people may have seniority that entitles them to greater consideration in their choice of
office. Explain how you could enhance the model to use seniority level data for each person.
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Building Larger Models

The linear programs that we have presented so far have been quite small, so their data
and solutions could fit onto a page. Most of the LPsfound in practical applications, how-
ever, have hundreds or thousands of variables and constraints, and some are even larger.

How do linear programs get to be so large? They might be like the ones we have
shown, but with larger indexing sets and more data. A steel mill could be considered to
make hundreds of different products, for example, if every variation of width, thickness,
and finish is treated separately. Or a large organization could have thousands of people
involved in one assignment problem. Nevertheless, these kinds of applications are not as
common as one might expect. As a model is refined to greater levels of detalil, its data
values become harder to maintain and its solutions harder to understand; past a certain
point, extra detail offers no benefit. Thus to plan production for afew lines, considerable
detail may be justifiable; but to plan for an entire company, it may be better to have a
small aggregated, plant-level model that be run many times with different scenarios.

A more common source of large linear programs is the linking together of smaller
ones. Itisnot unusual for an application to give rise to many simple LPs of the kinds we
have discussed before; here are three possibilities:

e Many products are to be shipped, and there is a transportation problem (asin Chap-

ter 3) for each product.

e Manufacturing is to be planned over many weeks, and there is a production prob-

lem (asin Chapter 1) for each week.

e Several products are made at several mills, and shipped to several factories; thereis

aproduction problem for each mill, and a transportation problem for each product.
When variables or constraints are added to tie these LPs together, the result can be one
very large LP. No individua part need be particularly detailed; the size is more due to
the large number of combinations of origins, destinations, products and weeks.

This chapter shows how AMPL models might be formulated for the three situations
outlined above. The resulting models are necessarily more complicated than our previous
ones, and require the use of a few more features from the AMPL language. Since they
build on the terminology and logic of smaller models that have aready been introduced,
however, these larger models are still manageable.

55
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4.1 A multicommodity transportation model

The transportation model of the previous chapter was concerned with shipping a sin-
gle commodity from origins to destinations. Suppose now that we are shipping severa
different products. We can define a new set, PROD, whose members represent the differ-
ent products, and we can add PROD to the indexing of every component in the model; the
result can be seen in Figure 4-1. Because suppl y, demand, cost, and Tr ans are
indexed over one more set in this version, they take one more subscript: suppl y[ i, p]
for the amount of product p shipped from origini , Trans[i, j, p] for theamount of p
shipped from i to j, and so forth. Even the check statement is now indexed over
PROD, so that it verifies that supply equals demand for each separate product.

If we look at Suppl y, Demand and Tr ans, there are (origins + destinations) x
(products) constraints in (origins) x (destinations) x (products) variables. The result
could be quite alarge linear program, even if the individual sets do not have many mem-
bers. For example, 5 origins, 20 destinations and 10 products give 250 constraints in
1000 variables. The size of this LP is misleading, however, because the shipments of the
products are independent. That is, the amounts we ship of one product do not affect the
amounts we can ship of any other product, or the costs of shipping any other product. We
would do better in this case to solve a smaller transportation problem for each individual
product. In AMPL terms, we would use the simple transportation model from the previ-
ous chapter, together with adifferent datafile for each product.

The situation would be different if some additional circumstances had the effect of
tying together the different products. As an example, imagine that there are restrictions
on the total shipments of products from an origin to a destination, perhaps because of lim-
ited shipping capacity. To accommodate such restrictions in our model, we declare anew
parameter | i mi t indexed over the combinations of origins and destinations.

paramlimt {ORl G DEST} >= 0;

Then we have a new collection of (origins) x (destinations) constraints, one for each ori-
gini and destination j , which say that the sum of shipments fromi toj of all products
p maynotexceedlimt[i,j]:

subject to Multi {i in ORIG j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limt[i,j];

Subject to these constraints (also shown in Figure 4-1), we can no longer set the amount
of one product shipped from i toj without considering the amounts of other products
also shipped fromi toj , sinceit isthe sum of al products that is limited. Thus we have
no choice but to solve the one large linear program.

For the steel mill in Chapter 1, the products were bands, coils, and plate. Thus the
data for the multicommodity model could look like Figure 4-2. We invoke AMPL in the
usua way to get the following solution:

anpl : model nulti.nod; data nmulti.dat; solve;
CPLEX 8.0.0: optimal solution; objective 199500
41 dual sinmplex iterations (0 in phase I)
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set ORI G # origins

set DEST; # destinations

set PROD; # products

param supply {ORl G PROD} >= O0;
par am dermand {DEST, PROD} >= 0;

check {p in PROD}:
sum{i in ORIG supply[i,

paramlimt {ORl G DEST} >= O;
param cost { ORI G DEST, PROD} >=

var Trans {ORl G DEST, PROD} >= 0;

m ni m ze Total Cost:
sum{i in ORIG ]
cost[i,j,p]

subject to Supply {i in ORIG

# amounts avail abl e at origins
# anmounts required at destinations

sum {j in DEST} denand[j, p];

p]

0; # shipment costs per unit

# units to be shipped

in DEST, p in PROD}
* Trans[i,j,pl;

p in PROD}:

sum{j in DEST} Trans[i,j,p] = supply[i,p];
subject to Denmand {j in DEST, p in PROD}:

sum{i in ORIG Trans[i,]j,p] = denmand[j, p];
subject to Multi {i in ORIG j in DEST}:

sum {p in PROD} Trans[i,j, p]

<= limt[i,j];

Figure4-1: Multicommodity transportation model (rrul ti . nod).

anpl : display {p in PROD}
Trans[i,j, bands’] [*,*]
: CLEV GARY PITT
DET 0 0 300
FRA 225 0 75
FRE 0 0 225
LAF 225 0 25
LAN 0 0 100
STL 250 400 0

0 0 75

W N

[*. "]

Trans[i,j, coils’]

: CLEV GARY PITT
DET 525 0 225
FRA 0 0 500
FRE 225 625 0
LAF 0 150 350
LAN 400 0 0
STL 300 25 625

150 0 100

W N

in ORI G in DEST} Trans[i,j,p];

{i
(tr)

i

(tr)
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set ORIG := GARY CLEV PITT ;
set DEST := FRA DET LAN WN STL FRE LAF ;
set PROD := bands coils plate ;

param supply (tr): GARY CLEV PITT :=
bands 400 700 800
coils 800 1600 1800
pl ate 200 300 300 ;

param dermand (tr):
FRA DET LAN WN STL FRE LAF :=
bands 300 300 100 75 650 225 250
coils 500 750 400 250 950 850 500
plate 100 100 0 50 200 100 250 ;

paramlinmt default 625 ;

param cost : =

[*,*, bands]: FRA DET LAN WN STL FRE LAF :=
GARY 30 10 8 10 11 71 6
CLEV 22 7 10 7 21 82 13
PITT 19 11 12 10 25 83 15

[*,*,coils]: FRA DET LAN WN STL FRE LAF :=
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20

[*,*, plate]: FRA DET LAN WN STL FRE LAF :=
GARY 41 15 12 16 17 86 8
CLEV 29 9 13 9 28 99 18
PITT 26 14 17 13 31 104 20 ;

Figure 4-2: Multicommodity transportation problem data (mul ti . dat).

Trans[i,j, plate’] [*,*] (tr)
: CLEV GARY PITT D=
DET 100 0 0
FRA 50 0 50
FRE 100 0 0
LAF 0 0 250
LAN 0 0 0
STL 0 200 0
0 0

W N 50

In both our specification of the shipping costs and AMPL’s display of the solution, a
three-dimensional collection of data (that is, indexed over three sets) must be represented
on a two-dimensiona screen or page. We accomplish this by ‘‘dlicing’’ the data along
one index, so that it appears as a collection of two-dimensional tables. The di spl ay
command will make a guess as to the best index on which to dlice, but by use of an



SECTION 4.2 A MULTIPERIOD PRODUCTION MODEL 59

set PROD; # products

param T > 0; # nunber of weeks

paramrate {PROD} > O; # tons per hour produced
param avail {1..T} >= 0; # hours avail able in week
param profit {PROD, 1..T}; # profit per ton

param market {PROD,1..T} >= 0; # limt on tons sold in week

var Make {p in PROD, t in 1..T} >= 0, <= market[p,t];
# tons produced

maxi m ze Total Profit:
sum{p in PROD, t in 1..T} profit[p,t] * Make[p,t];

# total profits fromall products in all weeks

subject to Time {t in 1..T}:
sum{p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

# total of hours used by all products
# may not exceed hours available, in each week

Figure4-3: Production model replicated over periods (st eel TO. nod).

explicit indexing expression as shown above, we can tell it to display a table for each
product.

The optimal solution above ships only 25 tons of coils from GARY to STL and 25 tons
of bands from PITT to LAF. It might be reasonable to require that, if any amount at al is
shipped, it must be at least, say, 50 tons. In terms of our model, either Trans[ i, j, p]
=0orTrans[i, ], p] >=50. Unfortunately, although it is possible to write such an
“*either/or’’ constraint in AMPL, it isnot alinear constraint, and so there is no way that an
LP solver can handle it. Chapter 20 explains how more powerful (but costlier) integer
programming techniques can deal with this and related kinds of discrete restrictions.

4.2 A multiperiod production model

Another common way in which models are expanded is by replicating them over time.
To illustrate, we consider how the model of Figure 1-4a might be used to plan production
for the next T weeks, rather than for a single week.

We begin by adding another index set to most of the quantities of interest. The added
set represents weeks numbered 1 through T, as shown in Figure 4-3. The expression
1. . TisAMPL’s shorthand for the set of integers from 1 through T. We have replicated
al the parameters and variables over this set, except for r at e, which isregarded as fixed
over time. As a result there is a constraint for each week, and the pr of i t terms are
summed over weeks as well as products.

So far thisis merely a separate LP for each week, unless something is added to tie the
weeks together. Just as we were able to find constraints that involved all the products, we
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could look for constraints that involve production in al of the weeks. Most multiperiod
models take a different approach, however, in which constraints relate each week’s pro-
duction to that of the following week only.

Suppose that we allow some of aweek’s production to be placed in inventory, for sale
in any later week. We thus add new decision variables to represent the amounts invento-
ried and sold in each week. The variables Make[ ], t] are retained, but they represent
only the amounts produced, which are now not necessarily the same as the amounts sold.
Our new variable declarations look like this:

var Make {PROD, 1..T} >= 0;
var Inv {PROD, 0..T} >= 0;

var Sell {p in PROD, t in 1..T} >= 0, <= market[p,t];

The bounds mar ket [ p, t ], which represent the maximum amounts that can be sold in
aweek, are naturally transferredto Sel | [ p, t] .

Thevariable | nv[ p, t ] will represent the inventory of product p at the end of period
t . Thus the quantities | nv[ p, 0] will be the inventories at the end of week zero, or
equivalently at the beginning of the first week — in other words, now. Our model
assumes that these initial inventories are provided as part of the data:

param i nvO0 { PROD} >= O;
A simple constraint guarantees that the variables | nv[ p, 0] takethese values:
subject to Init_Inv {p in PROD}: Inv[p,0] = inv0[p];

It may seem “‘inefficient’’ to devote a constraint like this to saying that a variable equals
a constant, but when it comes time to send the linear program to a solver, AMPL will
automatically substitute the value of i nvO[ p] for any occurrence of | nv[ p, 0] . In
most cases, we can concentrate on writing the model in the clearest or easiest way, and
|leave matters of efficiency to the computer.

Now that we are distinguishing sales, production, and inventory, we can explicitly
model the contribution of each to the profit, by defining three parameters:

param revenue {PRCD, 1..T} >= 0;
param prodcost {PRCD} >= 0;
param i nvcost {PROD} >= O;

These are incorporated into the objective as follows:

maxi m ze Total Profit:
sum{p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -
prodcost[p] *Make[ p,t] - invcost[p]l*Inv[p,t]);

As you can see, r evenue[ p, t] isthe amount received per ton of product p sold in
week t ; prodcost[p] andinvcost|[p] arethe production and inventory carrying
cost per ton of product p in any week.

Finally, with the sales and inventories fully incorporated into our model, we can add
the key constraints that tie the weeks together: the amount of a product made available in
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aweek, through production or from inventory, must equal the amount disposed of in that
week, through sale or to inventory:

subject to Balance {p in PROD, t in 1..T}:
Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

Because the index t is from a set of numbers, the period previousto t can be written as
t-1. Infact, t can be used in any arithmetic expression; conversely, an AMPL expres-
sionsuch ast - 1 may be used in any context where it makes sense. Notice also that for a
first-period constraint (t equal to 1), the inventory term on the leftis| nv[ p, 0] , theini-
tial inventory.

We now have a complete model, as shown in Figure 4-4. To illustrate a solution, we
use the small sample data file shown in Figure 4-5; it represents a four-week expansion of
the data from Figure 1-4b.

If we put the model and datainto filesst eel T. nod and st eel T. dat , then AMPL
can be invoked to find a solution:

anpl : nodel steel T. nod;

anpl : data steel T. dat;

anpl : sol ve;

M NOS 5.5: optimal solution found.
20 iterations, objective 515033

anpl : option display_1col O0;
anpl : display Make;

Make [*,*] (tr)
bands coils D=

1 5990 1407
2 6000 1400
3 1400 3500
4 2000 4200

anpl : display Inv;
Inv [*,*] (tr)
bands coils 1=

0 10 0
1 0 1100
2 0 0
3 0 0
4 0 0

anpl : display Sell;
Sell [*,*] (tr)
bands «coils D=

1 6000 307
2 6000 2500
3 1400 3500
4 2000 4200
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set PROD; # products
param T > 0; # nunber of weeks

paramrate {PROD} > O;

param i nv0 {PROD} >= O0;

param avail {1..T} >= 0;
param mar ket {PROD, 1..T} >= 0;

par am prodcost {PROD} >= 0;
param i nvcost {PROD} >= O0;
param revenue {PRCD, 1..T} >= 0;
var Make {PROD, 1..T} >= 0; tons produced

var Inv {PROD, 0..T} >= 0; tons inventoried
var Sell {pin PROD, t in 1..T} >= 0, <= market[p,t]; # tons sold

maxi m ze Total _Profit:
sum{p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -
prodcost[p] *Make[p,t] - invcost[p]*Inv[p,t]);

# Total revenue less costs in all weeks

tons per hour produced
initial inventory

hours avail able in week
limt on tons sold in week

cost per ton produced
carrying cost/ton of inventory
revenue per ton sold

HH HFHHF HHHFH

subject to Time {t in 1..T}:
sum{p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

# Total of hours used by all products
# may not exceed hours available, in each week

subject to Init_Inv {p in PROD}: Inv[p,0] = inv0[p];
# Initial inventory nmust equal given val ue

subject to Balance {p in PROD, t in 1..T}:
Make[ p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

# Tons produced and taken frominventory
# must equal tons sold and put into inventory

Figure 4-4: Multiperiod production model (st eel T. nod).

param T : = 4;
set PROD : = bands coils;

paramavail := 1 40 2 40 3 32 4 40 ;

bands 200 coils 140 ;
bands 10 coils 0 ;

bands 10 coils 11 ;
bands 2.5 «coils 3 ;

param revenue: 1 2 3 4 ;=
bands 25 26 27 27
coils 30 35 37 39 ;

par am nmar ket : 1 2 3 4 =
bands 6000 6000 4000 6500
coils 4000 2500 3500 4200 ;

paramrate :
param i nvO :

par am pr odcost
par am i nvcost

Figure 4-5; Datafor multiperiod production model (st eel T. dat ).
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Production of coilsin the first week is held over to be sold at a higher price in the second
week. In the second through fourth weeks, coils are more profitable than bands, and so
coils are sold up to the limit, with bands filling out the capacity. (Setting option
di spl ay_1col to zero permits this output to appear in a nicer format, as explained in
Section 12.2.)

4.3 A model of production and transportation

Large linear programs can be created not only by tying together small models of one
kind, as in the two examples above, but by linking different kinds of models. We con-
clude this chapter with an example that combines features of both production and trans-
portation models.

Suppose that the steel products are made at several mills, from which they are shipped
to customers at the various factories. For each mill we can define a separate production
model to optimize the amounts of each product to make. For each product we can define
a separate transportation model, with mills as origins and factories as destinations, to
optimize the amounts of the product to be shipped. We would like to link all these sepa-
rate models into a single integrated model of production and transportation.

To begin, we replicate the production model of Figure 1-4a over mills — that is, ori-
gins— rather than over weeks asin the previous example:

set PROD; # products
set ORI G # origins (steel mlls)

paramrate {ORIG PROD} > 0; # tons per hour at origins
param avail {ORIG >= 0; # hours available at origins

var Make {ORlI G PROD} >= 0; # tons produced at origins

subject to Time {i in ORIG:
sum{p in PROD} (1/rate[i,p]) * Make[i,p] <= avail[i];

We have temporarily dropped the components pertaining to the objective, to which we
will return later. We have also dropped the market demand parameters, since the
demands are now properly associated with the destinations in the transportation models.

The next step is to replicate the transportation model, Figure 3-1a, over products, as
we did in the multicommodity example at the beginning of this chapter:

set ORI G # origins (steel mlls)
set DEST; # destinations (factories)
set PROD; # products

param supply {ORIG PROD} >= 0; # tons available at origins
param demand {DEST, PROD} >= 0; # tons required at destinations

var Trans {ORlI G DEST, PROD} >= 0; # tons shi pped
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set ORIG # origins (steel mlls)
set DEST; # destinations (factories)
set PROD; # products

paramrate {ORl G PROD} > O; # tons per hour at origins

param avail {ORIG >= 0; # hours avail able at origins
param demand {DEST, PROD} >= 0; # tons required at destinations
par am nmake_cost {ORlI G PROD} >= O0; # manufacturing cost/ton
param trans_cost {ORI G DEST, PROD} >= 0; # shipping cost/ton

var Make {ORI G PROD} >= 0; # tons produced at origins

var Trans {ORlI G DEST, PROD} >= 0; # tons shi pped
m nimze Total _Cost:
sum{i in ORIG p in PROD} make_cost[i,p] * Make[i,p] +
sum{i in ORIG | in DEST, p in PROD}
trans_cost[i,j,p] * Trans[i,j,p];
subject to Time {i in ORIG:
sum{p in PROD} (1l/rate[i,p]) * Make[i,p] <= avail[il];
subject to Supply {i in ORIG p in PROD}:
sum {j in DEST} Trans[i,j,p] = Mke[i, p];
subject to Demand {j in DEST, p in PROD}:
sum{i in ORIG Trans[i,j,p] = demand[j, p];

Figure4-6: Production/transportation model, 3rd version (st eel P. nod).

subject to Supply {i in ORIG p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p];

subject to Demand {j in DEST, p in PROD}:
sum{i in ORIG Trans[i,]j,p] = demand[j, p];

Comparing the resulting production and transportation models, we see that the sets of ori-
gins (ORI G and products (PROD) are the same in both models. Moreover, the ‘‘tons
available at origins” (suppl y) in the transportation model are really the same thing as
the **tons produced at origins’ (Make) in the production model, since the steel available
for shipping will be whatever is made at the mill.

We can thus merge the two models, dropping the definition of suppl y and substitut-
ing Make[ i, p] for theoccurrence of suppl y[i, p]:

subject to Supply {i in ORIG p in PROD}:
sum{j in DEST} Trans[i,j,p] = Make[i,p];

There are several ways in which we might add an objective to complete the model. Per-
haps the smplest is to define a cost per ton corresponding to each variable. We define a
parameter make _cost so that there is a term nake_cost[i, p] * Make[i, p] in
the objective for each origini and product p; and we definet r ans_cost so that there
isateemtrans_cost[i,j,p] * Trans[i,j, p] inthe objective for each origini ,
destinationj and product p. The full model is shown in Figure 4-6.



65

SECTION 4.3 A MODEL OF PRODUCTION AND TRANSPORTATION
set ORIG:= GARY CLEV PITT ;
set DEST := FRA DET LAN WN STL FRE LAF ;
set PROD : = bands coils plate ;
paramavail := GARY 20 CLEV 15 PITT 20 ;
param demand (tr):
FRA- DET LAN WN STL FRE  LAF :
bands 300 300 100 75 650 225 250
coils 500 750 400 250 950 850 500
pl ate 100 100 0 50 200 100 250 ;
paramrate (tr): GARY CLEV PITT : =
bands 200 190 230
coils 140 130 160
pl ate 160 160 170 ;
param nake_cost (tr):
GARY CLEV PITT :=
bands 180 190 190
coils 170 170 180
pl ate 180 185 185 ;
paramtrans_cost :=
[*,*, bands]: FRA DET LAN WN STL FRE LAF :=
GARY 30 10 8 10 11 71 6
CLEV 22 7 10 7 21 82 13
PITT 19 11 12 10 25 83 15
[*,*,coils]: FRA DET LAN WN STL FRE LAF :=
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20
[*,*, plate]: FRA DET LAN WN STL FRE LAF :=
GARY 41 15 12 16 17 86 8
CLEV 29 9 13 9 28 99 18
PITT 26 14 17 13 31 104 20 ;

Figure4-7: Datafor production/transportation model (st eel P. dat).

Reviewing this formulation, we might observe that, according to the Suppl y decla-
ration, the nonnegative expression

sum {j

in DEST} Trans[i,j,p]

can be substituted for Make[ i, p] . If we make this substitution for all occurrences of
Make[ i, p] inthe objective and in the Ti me constraints, we no longer need to include
the Make variables or the Suppl y constraints in our model, and our linear programs will
be smaller as aresult. Nevertheless, in most cases we will be better off |eaving the model
as it is shown above. By ‘‘substituting out’’ the Make variables we render the model
harder to read, and not agreat deal easier to solve.
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Asan instance of solving alinear program based on this model, we can adapt the data
from Figure 4-2, as shown in Figure 4-7. Here are some representative result val ues:

anpl : nodel steel P.nod; data steel P.dat; solve
CPLEX 8.0.0: optinal solution; objective 1392175
27 dual sinplex iterations (0 in phase |)

anpl : option display_1col 5;
anpl: option omt_zero_rows 1, omit_zero_cols 1;

anpl : di splay Make

Make [*, *]

: bands coils plate 1=
CLEV 0 1950 0

GARY 1125 1750 300

PITT 775 500 500

anpl : display Trans;
Trans [CLEV, *, *]

coils

DET 750

LAF 500

LAN 400

STL 50

W N 250
[ GARY, *, *]

: bands coils plate 1=
FRE 225 850 100
LAF 250 0 0
STL 650 900 200

[PITT, *, *]

: bands coils plate 1=
DET 300 0 100

FRA 300 500 100

LAF 0 0 250

LAN 100 0 0

W N 75 0 50

anpl : display Tine;

Time [*] =
CLEV -1300

GARY -2800

As one might expect, the optimal solution does not ship al products from all mills to all
factories. We have used the options omit _zero rows and omt_zero_col s to
suppress the printing of table rows and columns that are all zeros. The dual values for
Ti e show that additional capacity is likely to have the greatest impact on total cost if it
isplaced at GARY, and no impact if itisplaced at PITT.
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We can aso investigate the relative costs of production and shipping, which are the
two components of the objective:

anpl: display sum{i in ORIG p in PROD}
make_cost[i,p] * Make[i, p];
sun{i in ORIG p in PROD} nake_cost[i,p]*Make[i,p] = 1215250
anpl: display sum{i in ORIG j in DEST, p in PROD}
trans_cost[i,j,p] * Trans[i,j,p];
sun{i in ORIG | in DEST, p in PROD}
trans_cost[i,j,p]l*Trans[i,j,p] = 176925

Clearly the production costs dominatein this case. These examples point up the ability of
AMPL to evaluate and display any valid expression.
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Exercises

4-1. Formulate a multi-period version of the transportation model, in which inventories are kept at
the origins.

4-2. Formulate a combination of a transportation model for each of severa foods, and a diet
model at each destination.

4-3. The following questions pertain to the multiperiod production model and data of Section 4.2.

(a) Display the marginal values associated with the constraints Ti me[ t ] . In which periods does it
appear that additional production capacity would be most valuable?

(b) By soliciting additional sales, you might be able to raise the upper bounds mar ket [ p, t].
Display the reduced costs Sel | [ p, t] . r ¢, and use them to suggest whether you would prefer to
go after more orders of bands or of coilsin each week.

(c) If the inventory costs are all positive, any optimal solution will have zero inventories after the
last week. Why isthis so?

This phenomenon is an example of an ‘‘end effect’”’. Because the model comes to an end after
period T, the solution tends to behave as if production is to be shut down after that point. One way
of dealing with end effectsis to increase the number of weeks modeled; then the end effects should
have little influence on the solution for the earlier weeks. Another approach is to modify the model
to better reflect the realities of inventories. Describe some modifications you might make to the
constraints, and to the objective.

4-4. A producer of packaged cookies and crackers runs several shifts each month at its large bak-
ery. This exercise is concerned with a multiperiod planning model for deciding how many crews
to employ each month. In the algebraic description of the model, there are sets S of shifts and P of
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products, and the planning horizon is T four-week periods. The relevant operational data are as
follows:

I number of production lines: maximum number of crewsthat can work in any shift
r,  production rate for product p, in crew-hours per 1000 boxes
h;  number of hoursthat acrew worksin planning period t

The following data are determined by market or managerial considerations:

wg total wagesfor acrew on shift sin one period
dy  demand for product p that must be met in period t
M maximum change in number of crews employed from one period to the next

The decision variables of the model are:

Xp = dy  total boxes (in 1000s) of product p baked in period t
0 < Y4 < | number of crews employed on shift sin period t

The objectiveisto minimize the total cost of all crews employed,
)Y seS z thlwsYS‘ )

Total hours required for production in each period may not exceed total hours available from all
shifts,

> peprpXpt <hy A £ foreacht=1,...,T.

The change in number of crews s restricted by

-M < ZSGS(YSxt*'l_YSt) < M, foreacht=1,..., T-1.

Asrequired by the definition of M, this constraint restricts any change to lie between a reduction of
M crews and an incresse of M crews.

(a) Formulate this model in AMPL, and solve the following instance. Thereare T =13 periods, | =8
production lines, and a maximum change of M =3 crews per period. The products are 18REG,
24REG, and 24PRO, with production ratesr , of 1.194, 1.509 and 1.509 respectively. Crews work
either a day shift with wages w of $44,900, or a night shift with wages $123,100. The demands
and working hours are given as follows by period:

Period t disrec 1 dasrec 1 daspro e h,
1 63.8 1212.0 0.0 156
2 76.0 306.2 0.0 152
3 88.4 319.0 0.0 160
4 913.8 208.4 0.0 152
5 115.0 298.0 0.0 156
6 133.8 328.2 0.0 152
7 79.6 959.6 0.0 152
8 111.0 257.6 0.0 160
9 121.6 335.6 0.0 152

10 470.0 118.0 1102.0 160
11 78.4 284.8 0.0 160
12 99.4 970.0 0.0 144
13 140.4 343.8 0.0 144
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Display the numbers of crews required on each shift. You will find many fractional numbers of
crews; how would you convert this solution to an optimal one in whole numbers?

(b) To be consistent, you should also require at most a change of M between the known initial
number of crews (already employed in the period before the first) and the number of crews to be
employed in the first planning period. Add a provision for this restriction to the model.

Re-solve with 11 initial crews. Y ou should get the same solution.

(c) Because of the limit on the change in crews from period to period, more crews than necessary
are employed in some periods. One way to dea with thisisto carry inventories from one period to
the next, so as to smooth out the amount of production required in each period. Add avariable for
the amount of inventory of each product after each period, as in the model of Figure 4-4, and add
congtraints that relate inventory to production and demand. (Because inventories can be carried
forward, production X,; need not be > demand d; in every period as required by the previous ver-
sions.) Also make a provision for setting initial inventories to zero. Finaly, add an inventory cost
per period per 1000 boxes to the objective.

Let the inventory costs be $34.56 for product 18REG, and $43.80 for 24REG and 24PRO. Solve
the resulting linear program; display the crew sizes and inventory levels. How different is this
solution? How much of asaving is achieved in labor cost, at how much expense in inventory cost?

(d) The demands in the given data peak at certain periods, when special discount promotions are in
effect. Big inventories are built up in advance of these peaks, particularly before period 4. Baked
goods are perishable, however, so that building up inventories past a certain number of periods is
unrealistic.

Modify the model so that the inventory variables are indexed by product, period and age, where
age runs from 1 to a specified limit A. Add constraints that the inventories of age 1 after any
period cannot exceed the amounts just produced, and that inventories of age a>1 after period t
cannot exceed the inventories of age a— 1 after period t — 1.

Verify that, with a maximum inventory age of 2 periods, you can use essentially the same solution
as in (c), but that with a maximum inventory age of 1 there are some periods that require more
crews.

(e) Suppose now that instead of adding a third index on inventory variables as in (d), you impose
the following inventory constraint: The amount of product p in inventory after period t may not
exceed the total production of product p in periodst — A+ 1 through t.

Explain why this constraint is sufficient to prevent any inventory from being more than A periods
old, provided that inventories are managed on a first-in, first-out basis. Support your conclusion
by showing that you get the same results as in (d) when solving with a maximum inventory age of
2orof 1.

(f) Explain how you would modify the modelsin (c), (d), and (€) to account for initia inventories
that are not zero.

4-5. Multiperiod linear programs can be especially difficult to develop, because they require data
pertaining to the future. To hedge against the uncertainty of the future, a user of these LPs typi-
cally develops various scenarios, containing different forecasts of certain key parameters. This
exercise asks you to develop what is known as a stochastic program, which finds a solution that can
be considered robust over all scenarios.

(a) The revenues per ton might be particularly hard to predict, because they depend on fluctuating
market conditions. Let the revenue datain Figure 4-5 be scenario 1, and also consider scenario 2:
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par am r evenue: 1 2 3 4
bands 23 24 25 25
coils 30 33 35 36 ;

and scenario 3:

param r evenue: 1 2 3 4
bands 21 27 33 35
coils 30 32 33 33 ;

By solving the three associated linear programs, verify that each of these scenarios leads to a dif-
ferent optimal production and sales strategy, even for the first week. You need one strategy, how-
ever, not three. The purpose of the stochastic programming approach is to determine a single solu-
tion that produces a good profit *‘on average’’ in acertain sense.

(b) As afirst step toward formulating a stochastic program, consider how the three scenarios could
be brought together into one linear program. Define a parameter S as the number of scenarios, and
replicate the revenue dataover theset 1. . S:

param S > 0;
param revenue {PROD, 1..T,1..S} >= 0;

Replicate al the variables and constraints in a similar way. (The idea is the same as earlier in this
chapter, where we replicated model components over products or weeks.)

Define a new collection of parameters pr ob[ s] , to represent your estimate of the probability that
ascenario s takes place:

paramprob {1..S} >= 0, <= 1,
check: 0.99999 < sum{s in 1..S} prob[s] < 1.00001;

The objective function is the expected profit, which equals the sum over all scenarios of the proba-
bility of each scenario times the optimum profit under that scenario:
maxi m ze Expected_Profit:
sum{s in 1..S} prob[s] *
sum{p in PROD, t in 1..T} (revenue[p,t,s]*Sell[p,t,s] -
prodcost [ p] *Make[ p,t,s] - invcost[p]*Inv[p,t,s]);

Complete the formulation of this multiscenario linear program, and put together the data for it. Let
the probabilities of scenarios 1, 2 and 3 be 0.45, 0.35 and 0.20, respectively. Show that the solu-
tion consists of a production strategy for each scenario that is the same as the strategy in ().

(c) The formulation in (b) is no improvement because it makes no connection between the scenar-
ios. One way to make the model usable isto add ‘‘nonanticipativity’’ constraints that require each
week-1 variable to be given the same value across all scenarios. Then the result will give you the
best single strategy for the first week, in the sense of maximizing expected profit for all weeks.
The strategies will still diverge after the first week — but a week from now you can update your
data and run the stochastic program again to generate a second week’ s strategy.

A nonanticipativity constraint for the Mak e variables can be written
subject to Make_na {p in PROD, s in 1..S1}:
Make[ p, 1,s] = Make[p, 1, s+1];
Add the analogous congtraints for the | nv and Sel | variables. Solve the stochastic program, and
verify that the solution consists of asingle period-1 strategy for all three scenarios.

(d) After getting your solution in (c), use the following command to look at the profits that the rec-
ommended strategy will achieve under the three scenarios:
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display {s in 1..S}
sum{p in PROD, t in 1..T} (revenue[p,t,s]*Sell[p,t,s] -
prodcost [ p] *Make[ p,t,s] - invcost[p]*Inv[p,t,s]);

Which scenario will be most profitable, and which will be least profitable?

Repeat the analysis with probabilities of 0.0001, 0.0001 and 0.9998 for scenarios 1, 2 and 3. You
should find that profit from strategy 3 goes up, but profits from the other two go down. Explain
what these profits represent, and why the results are what you would expect.



5

Simple Sets and Indexing

The next four chapters of this book are a comprehensive presentation of AMPL’s facil-
ities for linear programming. The organization is by language features, rather than by
model types as in the four preceding tutorial chapters. Since the basic features of AMPL
tend to be closely interrelated, we do not attempt to explain any one feature in isolation.
Rather, we assume at the outset a basic knowledge of AMPL such as Chapters 1 through 4
provide.

We begin with sets, the most fundamental components of an AMPL model. Almost
al of the parameters, variables, and constraints in a typical model are indexed over sets,
and many expressions contain operations (usually summations) over sets. Set indexing is
the feature that permits a concise model to describe alarge mathematical program.

Because sets are so fundamental, AMPL offers a broad variety of set types and opera-
tions. A set’s members may be strings or numbers, ordered or unordered; they may occur
singly, or as ordered pairs, triples or longer ‘‘tuples’’. Sets may be defined by listing or
computing their members explicitly, by applying operations like union and intersection to
other sets, or by specifying arbitrary arithmetic or logical conditions for membership.

Any model component or iterated operation can be indexed over any set, using a stan-
dard form of indexing expression. Even sets themselves may be declared in collections
indexed over other sets.

This chapter introduces the simpler kinds of sets, as well as set operations and index-
ing expressions; it concludes with a discussion of ordered sets. Chapter 6 shows how
these ideas are extended to compound sets, including sets of pairs and triples, and indexed
collections of sets. Chapter 7 is devoted to parameters and expressions, and Chapter 8 to
the variables, objectives and constraints that make up alinear program.

5.1 Unordered sets

The most elementary kind of AMPL set is an unordered collection of character strings.
Usually all of the strings in a set are intended to represent instances of the same kind of
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entity — such as raw materials, products, factories or cities. Often the strings are chosen
to have recognizable meanings (coi | s, FI SH, New_Yor k), but they could just as well
be codes known only to the modeler (23RPFG, 486/ 33C). A literal string that appears
in an AMPL model must be delimited by quotes, either single (" A&P' ) or double
("Bel | +Howel | "). In all contexts, upper case and lower case letters are distinct, so
that for example" fi sh"," Fi sh",and" FI SH' represent different set members.

The declaration of a set need only contain the keyword set and a name. For exam-
ple, amodel may declare

set PROD;

toindicate that a certain set will be referred to by the name PROD in the rest of the model.
A name may be any sequence of letters, numerals, and underscore (_) characters that is
not alegal number. A few names have special meaningsin AMPL, and may only be used
for specific purposes, while a larger number of names have predefined meanings that can
be changed if they are used in some other way. For example, sumisreserved for theiter-
ated addition operator; but pr od is merely pre-defined as the iterated multiplication
operator, so you can redefine pr od as a set of products:

set prod;

A list of reserved wordsis givenin Section A.1.

A declared set’s membership is normally specified as part of the data for the model, in
the manner to be described in Chapter 9; this separation of model and data is recom-
mended for most mathematical programming applications. Occasionally, however, it is
desirable to refer to a particular set of strings within amodel. A literal set of thiskind is
specified by listing its members within braces:

{"bands", "coils", "plate"}

This expression may be used anywhere that a set is valid, for example in a model state-
ment that gives the set PROD a fixed membership:

set PROD = {"bands", "coils", "plate"};

This sort of declaration is best limited to cases where a set’s membership is small, is a
fundamental aspect of the model, or is not expected to change often. Nevertheless we
will see that the = phrase is often useful in set declarations, for the purpose of defining a
set in terms of other sets and parameters. The operator = may be replaced by def aul t
to initialize the set while alowing its value to be overridden by a data statement or
changed by subsequent assignments. These options are more important for parameters,
however, so we discuss them more fully in Section 7.5.

Notice that AMPL makes a distinction between a string such as " bands" and a set
like{ " bands"} that has a membership of one string. The set that has no members (the
empty set) isdenoted { } .
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5.2 Sets of numbers

Set members may also be numbers. Infact a set’s members may be a mixture of num-
bers and strings, though this is seldom the case. In an AMPL model, aliteral number is
written in the customary way as a sequence of digits, optionally preceded by a sign, con-
taining an optional decimal point, and optionally followed by an exponent; the exponent
consists of ad, D, e, or E, optionally a sign, and a sequence of digits. A number (1) and
the corresponding string (" 1") are distinct; by contrast, different representations of the
same number, such as 100 and 1E+2, stand for the same set member.

A set of numbersis often a sequence that corresponds to some progression in the situ-
ation being modeled, such as a series of weeks or years. Just as for strings, the numbers
in a set can be specified as part of the data, or can be specified within a model as a list
between braces, suchas{ 1, 2, 3, 4, 5, 6} . Thissort of set can be described more con-
cisely by the notation 1. . 6. An additional by clause can be used to specify an interval
other than 1 between the numbers; for instance,

1990 .. 2020 by 5

represents the set
{1990, 1995, 2000, 2005, 2010, 2015, 2020}

This kind of expression can be used anywhere that a set is appropriate, and in particular
within the assignment phrase of a set declaration:

set YEARS = 1990 .. 2020 by 5;

By giving the set a short and meaningful name, this declaration may help to make the rest
of the model more readable.

It is not good practice to specify all the numbers within a. . expression by literals
like 2020 and 5, unless the values of these numbers are fundamental to the model or will
rarely change. A better arrangement is seen in the multiperiod production example of
Figures 4-4 and 4-5, where a parameter T is declared to represent the number of periods,
and the expressions 1. . T and 0. . T are used to represent sets of periods over which
parameters, variables, constraints and sums are indexed. The value of T is specified in
the data, and is thus easily changed from one run to the next. As amore elaborate exam-
ple, we could write

param start integer;
param end > start integer;
paraminterval > 0 integer;

set YEARS = start .. end by interval;
If subsequently we were to give the data as
param start := 1990;

param end : = 2020;
paraminterval := b5;
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then YEARS would be the same set as in the previous example (asit would aso be if end
were 2023.) You may use any arithmetic expression to represent any of the valuesin a
. expression.
The members of a set of numbers have the same properties as any other numbers, and
hence can be used in arithmetic expressions. A simple example is seen in Figure 4-4,
where the material balance constraint is declared as

subject to Balance {p in PROD, t in 1..T}:
Make[ p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

Becauset runsovertheset1.. T, wecanwritel nv[ p, t - 1] to represent the inventory
at the end of the previous week. If t instead ran over a set of strings, the expressiont - 1
would be rejected as an error.

Set members need not be integers. AMPL attempts to store each numerical set mem-
ber as the nearest representable floating-point number. You can see how this works out
on your computer by trying an experiment like the following:

anpl : option display_w dth 50;
anpl: display -5/3 .. 5/3 by 1/3;
set -5/3 .. 5/3 by 1/3 :=

-1. 6666666666666667 0. 33333333333333326
-1.3333333333333335 0. 6666666666666663
-1 0. 9999999999999998
-0.6666666666666667 1. 3333333333333333
- 0. 3333333333333335 1. 6666666666666663

-2.220446049250313e- 16;

Y ou might expect 0 and 1 to be members of this set, but things do not work out that way
due to rounding error in the floating-point computations. It is unwise to use fractional
numbersin sets, if your model relies on set members having precise values. There should
be no comparable problem with integer members of reasonable size; integers are repre-
sented exactly for magnitudes up to 2% (approximately 10%°) for IEEE standard arith-
metic, and up to 2%’ (approximately 10%4) for almost any computer in current use.

5.3 Set operations

AMPL has four operators that construct new sets from existing ones:

A union B union: ineither Aor B

Ainter B intersection: in both Aand B

Adiff B difference: in Abut not B

A symdiff B symmetric difference: in A or B but not both

The following excerpt from an AMPL session shows how these work:
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anpl: set Y1 1990 .. 2020 by 5;

anpl : set Y2 2000 .. 2025 by 5;

anpl: display Y1 union Y2, Y1 inter Y2;

set Y1 union Y2 := 1990 1995 2000 2005 2010 2015 2020 2025;
set Y1l inter Y2 := 2000 2005 2010 2015 2020;

anpl: display Y1 diff Y2, Y1 symdiff Y2;
set Y1 diff Y2 := 1990 1995;
set Y1l syndiff Y2 := 1990 1995 2025;

The operands of set operators may be other set expressions, allowing more complex
expressions to be built up:

anpl : display Y1 symdiff (Y1l syndiff Y2);

set Y1 syndiff (Y1 syndiff Y2) :=

2000 2005 2010 2015 2020 2025;

anpl : display (Y1l union {2025, 2035, 2045}) diff Y2;

set Y1 union {2025, 2035, 2045} diff Y2 :=
1990 1995 2035 2045;

anpl : display 2000..2040 by 5 syndiff (Y1 union Y2);
set 2000 .. 2040 by 5 syndiff (Y1 union Y2) :=
2030 2035 2040 1990 1995;

The operands must always represent sets, however, so that for example you must write
Y1 uni on {2025}, not Y1 uni on 2025.

Set operators group to the left unless parentheses are used to indicate otherwise. The
uni on, di ff, and syndi f f operators have the same precedence, just below that of
i nter. Thus, for example,

A union Binter Cdiff D
isparsed as
(A union (Binter Q) diff D

A precedence hierarchy of all AMPL operatorsisgivenin Table A-1 of Section A.4.

Set operations are often used in the assignment phrase of a set declaration, to define a
new set in terms of already declared sets. A simple example is provided by avariation on
the diet model of Figure 2-1. Rather than specifying a lower limit and an upper limit on
the amount of every nutrient, suppose that you want to specify a set of nutrients that have
alower limit, and a set of nutrients that have an upper limit. (Every nutrient isin one set
or the other; some nutrients might be in both.) Y ou could declare:

set M NREQ # nutrients with mninumrequirenents
set MAXREQ # nutrients with maxi numrequirenents
set NUTR; # all nutrients (DUBIQUS)

But then you would be relying on the user of the model to make sure that NUTR contains
exactly all the members of M NREQ and MAXREQ. At best thisis unnecessary work, and
at worst it will be doneincorrectly. Instead you can define NUTR as the union:

set NUTR = M NREQ uni on MAXREQ
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set M NREQ # nutrients with mnimumrequirenments
set MAXREQ # nutrients with maxi mum requirenments

set NUTR = M NREQ uni on MAXREQ # nutrients
set FOOD; # foods

param cost {FOOD} > O;
param f_min {FOOD} >= 0;
paramf_max {j in FOOD} >=f_nmin[j];

paramn_mn {MNREG >= O;
param n_max { MAXREQ} >= 0;

param ant {NUTR, FOOD} >= 0;
var Buy {j in FOOD} >=f nmin[j], <= f_max[j];
mnimze Total _Cost: sum{j in FOOD} cost[j] * Buy[j];

subject to Diet_Mn {i in MNREGQ}:
sum{j in FOOD} ant[i,j] * Buy[j] >= n_min[i];

subject to Diet_Max {i in MAXREQ :
sum{j in FOOD} ant[i,j] * Buy[j] <= n_max[i];

Figure5-1: Diet model using uni on operator (di et u. nod).

All three of these sets are needed, since the nutrient minima and maxima are indexed over
M NREQand MAXREQ,

paramn_nmin {MNREG >= O;
param n_max { MAXREQG >= O;

while the amounts of nutrientsin the foods are indexed over NUTR:
param ant {NUTR, FOOD} >= 0;

The modification of the rest of the model is straightforward; the result is shown in Figure
5-1.

Asagenera principle, it isabad ideato set up a model so that redundant information
has to be provided. Instead a minimal necessary collection of sets should be chosen to be
supplied in the data, while other relevant sets are defined by expressionsin the model.

5.4 Set membership operations and functions

Two other AMPL operators, i n and wi t hi n, test the membership of sets. As an
example, the expression

"B2" in NUTR
istrueif and only if the string " B2" is amember of the set NUTR. The expression
M NREQ wi t hi n NUTR
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is true if all members of the set M NREQ are also members of NUTR — that is, if
M NREQis a subset of (or isthe same as) NUTR. Thei n and wi t hi n operators are the
AMPL counterparts of € and c in traditional algebraic notation. The distinction between
members and sets is especially important here; the left operand of i n must be an expres-
sion that evaluates to a string or number, whereas the left operand of wi t hi n must be an
expression that evaluates to a set.

AMPL also provides operators not i n and not wi t hi n, which reverse the truth
value of their result.

You may apply wi t hi n directly to a set you are declaring, to say that it must be a
subset of some other set. Returning to the diet example, if al nutrients have a minimum
requirement, but only some subset of nutrients has a maximum requirement, it would
make sense to declare the sets as:

set NUTR,
set MAXREQ wi thin NUTR;

AMPL will reject the data for this model if any member specified for MAXREQis not also
amember of NUTR.

The built-in function car d computes the number of members in (or cardinality of) a
set; for example, car d( NUTR) is the number of members in NUTR. The argument of
the car d function may be any expression that evaluates to a set.

5.5 Indexing expressions

In algebraic notation, the use of sets is indicated informally by phrases such as *‘for
alieP”or*fort=1,...,T" or““foraljeR suchthatc; > 0.’ The AMPL counter-
part is the indexing expression that appears within braces{ ...} in nearly al of our exam-
ples. An indexing expression is used whenever we specify the set over which a model
component is indexed, or the set over which a summation runs. Since an indexing
expression defines a set, it can be used in any place where a set is appropriate.

The simplest form of indexing expression is just a set hame or expression within
braces. We have seen this in parameter declarations such as these from the multiperiod
production model of Figure 4-4:

paramrate {PROD} > O;
paramavail {1..T} >= 0;

Later in the model, references to these parameters are subscripted with a single set mem-
ber, in expressions such as avai | [t] and r at e[ p] . Variables can be declared and
used in exactly the same way, except that the keyword var takesthe place of par am
The names such ast and i that appear in subscripts and other expressions in our
models are examples of dummy indices that have been defined by indexing expressions.
In fact, any indexing expression may optionally define a dummy index that runs over the
specified set. Dummy indices are convenient in specifying bounds on parameters:
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param f _min {FOOD} >= 0O;
paramf_max {j in FOOD} >=f_mn[j];

and on variables:
var Buy {j in FOOD} >=f _nin[j], <= f_max[j];

They are also essential in specifying the sets over which constraints are defined, and the
sets over which summations are done. We have often seen these uses together, in decla-
rations such as

subject to Time {t in 1..T}:
sum{p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

and

subject to Diet_Mn {i in MNREGQ:
sum{j in FOOD} ant[i,j] * Buy[j] >= n_min[i];

An indexing expression consists of an index name, the keyword i n, and a set expression
as before. We have been using single letters for our index names, but this is not a
reguirement; an index name can be any sequence of letters, digits, and underscores that is
not avalid number, just like the name for amodel component.

Although a name defined by a model component’s declaration is known throughout
all subsequent statements in the model, the definition of adummy index nameis effective
only within the scope of the defining indexing expression. Normally the scope is evident
from the context. For instance, in the Di et _M n declaration above, the scope of {i i n
M NREGQ runsto the end of the statement, so that i can be used anywhere in the descrip-
tion of the constraint. On the other hand, the scope of {j i n FOOD} covers only the
summandant[i,j] * Buy[]j]. Thescope of indexing expressions for sums and other
iterated operators is discussed further in Chapter 7.

Once an indexing expression’ s scope has ended, its dummy index becomes undefined.
Thus the same index name can be defined again and again in a model, and in fact it is
good practice to use relatively few different index names. A common convention is to
associate certain index names with certain sets, so that for example i aways runs over
NUTRandj awaysrunsover FOOD. Thisis merely a convention, however, not arestric-
tion imposed by AMPL. Indeed, when we modified the diet model so that there was a
subset M NREQof NUTR, we used i to run over M NREQas well as NUTR. The opposite
situation occurs, for example, if we want to specify a constraint that the amount of each
foodj inthedietisat least somefractionmi n_frac[j] of thetotal food in the diet:

subject to Food_Ratio {j in FOOD}:
Buy[j] >= min_frac[j] * sum{jj in FOOD} Buy[jj];

Since the scope of j i n FOOD extends to the end of the declaration, a different index j j
is defined to run over the set FOOD in the summation within the constraint.

As afinal option, the set in an indexing expression may be followed by a colon (:)
and alogical condition. The indexing expression then represents only the subset of mem-
bers that satisfy the condition. For example,
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{j in FOOD: f_max[j] - f_min[j] < 1}

describes the set of all foods whose minimum and maximum amounts are nearly the
same, and

{i in NUTR i in MAXREQ or n_min[i] > 0}

describes the set of nutrients that are either in MAXREQ or for which n_mi n is positive.
The use of operators such as or and < to form logical conditions will be fully explained
in Chapter 7.

By specifying a condition, an indexing expression defines anew set. You can use the
indexing expression to represent this set not only in indexed declarations and summa-
tions, but anywhere else that a set expression may appear. For example, you could say
either of

set NUTREQ = {i in NUTR i in MAXREQ or n_min[i] > 0};
set NUTREQ = MAXREQ union {i in MNREQ n_nmin[i] > 0};

to define NUTREQ to represent our preceding example of a set expression, and you could
use either of

set BOTHREQ = {i in MNREQ i in MAXREQ;
set BOTHREQ = M NREQ i nter MAXREQ

to define BOTHREQ to be the set of al nutrients that have both minimum and maximum
requirements. It's not unusual to find that there are several ways of describing some
complicated set, depending on how you combine set operations and indexing expression
conditions. Of course, some possihilities are easier to read than others, so it's worth tak-
ing some trouble to find the most readable. In Chapter 6 we also discuss efficiency con-
siderations that sometimes make one aternative preferable to another in specifying com-
pound sets.
In addition to being valuable within the model, indexing expressions are useful in

di spl ay statements to summarize characteristics of the data or solution. The following
example is based on the model of Figure 5-1 and the data of Figure 5-2:

anpl : nodel dietu. nod;

anpl : data dietu.dat;

anpl : display MAXREQ union {i in MNREQ n_mn[i] > 0};

set MAXREQ union {i in MNREQ n_nmin[i] >0} := ANACAL G

anpl : sol ve;

CPLEX 8.0.0: optimal solution; objective 74.27382022

2 dual sinplex iterations (0 in phase I)

anpl: display {j in FOOD: Buy[j] > f_mn[j]};

set {j in FOOD: Buy[j] > f_min[j]} := CHK MIL SPG

anpl: display {i in MNREQ Diet_Mn[i].slack 0};

set {i in MNREQ (Diet_Mn[i].slack) == 0} C CAL;

AMPL interactive commands are allowed to refer to variables and constraints in the con-
dition phrase of an indexing expression, as illustrated by the last two di spl ay state-
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set MNREQ := A BL B2 C CAL ;
set MAXREQ : = A NA CAL
set FOOD : = BEEF CHK FI SH HAM MCH MIL SPG TUR

par am cost f _mn f_max :=

BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10 ;
par am n_mn n_max :=

A 700 20000

C 700

Bl 0

B2 0 .

NA 50000

CAL 16000 24000 :

param ant (tr): A C Bl B2 NA CAL : =
BEEF 60 20 10 15 938 295
CHK 8 0 20 20 2180 770
FI SH 8 10 15 10 945 440
HAM 40 40 35 10 278 430
MCH 15 35 15 15 1182 315
MTL 70 30 15 15 896 400
SPG 25 50 25 15 1329 370
TUR 60 20 15 10 1397 450 ;

Figure5-2: Datafor diet model (di et u. dat ).

ments above. Within a model, however, only sets, parameters and dummy indices may
be mentioned in any indexing expression.

The set BOTHREQ above might well be empty, in the case where every nutrient has
either a minimum or a maximum requirement in the data, but not both. Indexing over an
empty set is not an error. When amodel component is declared to be indexed over a set
that turns out to be empty, AMPL simply skips generating that component. A sumover
an empty set is zero, and other iterated operators over empty sets have the obvious inter-
pretations (see A.4).

5.6 Ordered sets

Any set of numbers has a natural ordering, so numbers are often used to represent
entities, like time periods, whose ordering is essential to the specification of amodel. To
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describe the difference between this week’ s inventory and the previous week’ s inventory,
for example, we need the weeks to be ordered so that the ** previous™ week is always well
defined.

An AMPL model can also define its own ordering for any set of numbers or strings, by
adding the keyword or dered or ci rcul ar to the set’'s declaration. The order in
which you give the set’s members, in either the model or the data, is then the order in
which AMPL works with them. In aset declared ci r cul ar , the first member is consid-
ered to follow the last one, and the last to precede the first; in an or der ed set, the first
member has no predecessor and the last member has no successor.

Ordered sets of strings often provide better documentation for amodel’ s data than sets
of numbers. Returning to the multiperiod production model of Figure 4-4, we observe
that there is no way to tell from the data which weeks the numbers 1 through T refer to, or
even that they are weeks instead of days or months. Suppose that instead we let the
weeks be represented by an ordered set that contains, say, 27sep, 04oct, 11oct and
18oct . Thedeclaration of T isreplaced by

set WEEKS or der ed;

and all subsequent occurrences of 1. . T are replaced by WEEKS. |In the Bal ance con-
straint, the expressiont - 1 isreplaced by prev(t), which selects the member before t
in the set’s ordering:

subject to Balance {p in PROD, t in WEEKS}:
Make[ p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t]; # WRONG

Thisis not quite right, however, because when t is the first week in WEEKS, the member
prev(t) isnot defined. When you try to solve the problem, you will get an error mes-
sage like this:

error processing constraint Bal ance[’ bands’,’ 27sep’]:
can’t conpute prev(’'27sep’, WEEKS) --
"27sep’ is the first nenber

One way to fix thisisto give a separate balance constraint for the first period, in which
I nv[ p, prev(t)] isreplaced by theinitial inventory, i nvO[ p] :

subj ect to BalanceO {p in PROD}:
Make[ p, first (VWEEKS)] + invO[p]
= Sell[p,first(WEEKS)] + Inv[p,first(WEEKS)];

The regular balance constraint is limited to the remaining weeks:

subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
Make[ p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];

The complete model and data are shown in Figures 5-3 and 5-4. As a tradeoff for more
meaningful week names, we have to write a slightly more complicated model.

As our example demonstrates, AMPL provides avariety of functions that apply specif-
ically to ordered sets. These functions are of three basic types.
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set PROD; # products
set WEEKS ordered; # nunber of weeks

paramrate {PROD} > O;

param i nv0 {PROD} >= 0;

param avai |l {WEEKS} >= 0;
param mar ket {PROD, WEEKS} >= O0;

par am prodcost {PROD} >= 0;
param i nvcost {PROD} >= O;
param revenue {PROD, \EEKS} >= 0;

var Make {PROD, \EEKS} >= 0; tons produced
var | nv {PROD, WEEKS} >= O0; tons inventoried
var Sell {p in PROD, t in WEEKS} >= 0, <= market[p,t]; # tons sold

maxi m ze Total _Profit:
sum{p in PROD, t in WEEKS} (revenue[p,t]*Sell[p,t] -
prodcost[p] *Make[p,t] - invcost[p]*Inv[p,t]);

tons per hour produced
initial inventory

hours avail abl e in week
limt on tons sold in week

cost per ton produced
carrying cost/ton of inventory
revenue/ton sold

HH OHEHH HFHHHR

# Objective: total revenue |less costs in all weeks

subject to Tine {t in WEEKS}:
sum{p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

# Total of hours used by all products
# may not exceed hours available, in each week

subj ect to Bal anceO {p in PROD}:
Make[ p, first (VWEEKS)] + invO[p]
= Sell[p,first(WEEKS)] + Inv[p,first(WEEKS)];

subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
Make[ p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];

# Tons produced and taken frominventory
# must equal tons sold and put into inventory

Figure5-3: Production model with ordered sets (st eel T2. nod).

First, there are functions that return a member from some absolute position in a set.
You can write fi r st (VEEKS) and | ast ( V\EEKS) for the first and last members of
the ordered set WEEKS. To pick out other members, you can use mrenber ( 5, VEEKS) ,
say, for the 5th member of WEEKS. The arguments of these functions must evaluate to an
ordered set, except for the first argument of menber , which can be any expression that
evaluates to a positive integer.

A second kind of function returns a member from a position relative to another mem-
ber. Thus you can write prev(t, WVEEKS) for the member immediately before t in
VEEKS, and next (t, WEEKS) for the member immediately after. More generaly,
expressions such as prev(t, VEEKS, 5) and next (t, WEEKS, 3) refer to the 5th
member before and the 3rd member after t in WEEKS. There are also ‘‘wraparound’”’
versions pr evw and next w that work the same except that they treat the end of the set
as wrapping around to the beginning; in effect, they treat all ordered sets asiif their decla-
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set PROD := bands coils ;
set WEEKS := 27sep O4oct 1loct 18oct ;

param avail := 27sep 40 04oct 40 1loct 32 18oct 40 ;

paramrate : bands 200 <coils 140 ;
param i nvO : bands 10 «coils 0 ;

param prodcost := bands 10 coils 11 ;
paraminvcost := bands 2.5 coils 3 ;

param revenue: 27sep O4oct 1lloct 18oct : =
bands 25 26 27 27
coils 30 35 37 39 ;

param market: 27sep O4oct 1loct 18oct : =
bands 6000 6000 4000 6500
coils 4000 2500 3500 4200 ;

Figure5-4; Datafor production model (st eel T2. dat ).

rationswere ci r cul ar. Inal of these functions, the first argument must evaluate to a
number or string, the second argument to an ordered set, and the third to an integer. Nor-
mally the integer is positive, but zero and negative values are interpreted in a consistent
way; for instance, next (t, WEEKS, 0) isthesameast, and next (t, VEEKS, - 5) is
thesameasprev(t, VEEKS, 5) .

Finally, there are functions that return the position of a member within a set. The
expression or d(t , WEEKS) returns the numerical position of t within the set WEEKS,
or gives you an error message if t is not a member of WEEKS. The alternative
ordo(t, VIEEKS) is the same except that it returns O if t is not a member of VEEKS.
For these functions the first argument must evaluate to a positive integer, and the second
to an ordered set.

If the first argument of next , next w, pr ev, pr evw, or or d isadummy index that
runs over an ordered set, its associated indexing set is assumed if a set is not given as the
second argument. Thusin the constraint

subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
Make[ p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];

the functions ord(t) and prev(t) are interpreted as if they had been written
ord(t, VEEKS) and prev(t, WEEKS) .

Ordered sets can also be used with any of the AMPL operators and functions that
apply to sets generally. Theresult of adi f f operation preserves the ordering of the left
operand, so the material balance constraint in our example could be written:

subj ect to Balance {p in PROD, t in WEEKS diff {first(WEEKS)}}:
Make[ p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];

For uni on, i nter and syndi f f, however, the ordering of the result is not well
defined; AMPL treats the result as an unordered set.
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For a set that is contained in an ordered set, AMPL provides a way to say that the
ordering should be inherited. Suppose for example that you want to try running the mul-
tiperiod production model with horizons of different lengths. In the following declara-
tions, the ordered set ALL_WEEKS and the parameter T are given in the data, while the
subset WEEKS is defined by an indexing expression to include only the first T weeks:

set ALL_WEEKS order ed;
param T > 0 integer;

set WEEKS = {t in ALL_WEEKS: ord(t) <= T} ordered by ALL_WEEKS;

We specify or der ed by ALL_WEEKS so that WEEKS becomes an ordered set, with its
members having the same ordering as they do in ALL_WEEKS. The or der ed by and
ci rcul ar by phrases have the same effect as the wi t hi n phrase of Section 5.4
together with or der ed or ci r cul ar, except that they also cause the declared set to
inherit the ordering from the containing set. There are also or der ed by rever sed
and ci rcul ar by rever sed phrases, which cause the declared set’s ordering to be
the opposite of the containing set’s ordering. All of these phrases may be used either
with a subset supplied in the data, or with a subset defined by an expression as in the
example above.

Predefined sets and interval expressions

AMPL provides special names and expressions for certain common intervals and other
sets that are either infinite or potentially very large. Indexing expressions may not iterate
over these sets, but they can be convenient for specifying the conditional phrasesin set
and par amdeclarations.

AMPL intervals are sets containing all numbers between two bounds. There are inter-
vals of rea (floating-point) numbers and of integers, introduced by the keywords
i nterval andi nt eger respectively. They may be specified as closed, open, or half-
open, following standard mathematical notation,

nterval [a, b] ={x: a<x<b},
nterval (a, b] ={x:a < x<b},
nterval [a, b) ={x:a<x< b},
nterval (a, b) ={x:a < x < b},
nteger [a, b] ={xel:a<x<b},
nteger (a, b] ={xel:a < x<b},
nteger [a, b) ={xel:a<x< b},
nteger (a, b) ={xel:a < x< b}

where a and b are any arithmetic expressions, and | denotes the set of integers. In the
declaration phrases

i n interval

wi t hi n interval

ordered by [ reversed ] interval
circular by [ reversed ] interval
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thekeyword i nt er val may be omitted.
Asan example, in declaring Chapter 1's parameter r at e, you can declare

paramrate {PROD} in interval (O, naxrate];
to say that the production rates have to be greater than zero and not more than some pre-
viously defined parameter maxr at e; you could write the same thing more concisely as
paramrate {PROD} in (O, maxrate];

or equivaently as

paramrate {PROD} > 0, <= maxrate;

An open-ended interval can be specified by using the predefined AMPL parameter
I nfinity astheright-hand bound, or - | nfi ni ty astheleft-hand bound, so that

paramrate {PROD} in (O,Infinity];
means exactly the same thing as
paramrate {PROD} > O;

in Figure 1-4a. In general, intervals do not let you say anything new in set or parameter
declarations; they just give you aternative ways to say things. (They have a more essen-
tial role in defining imported functions, as discussed in Section A.22.)

The predefined infinite sets Real s and | nt eger s are the sets of al floating-point
numbers and integers, respectively, in numeric order. The predefined infinite sets
ASCl | , EBCDI C, and Di spl ay al represent the universal set of strings and numbers
from which members of any one-dimensional set are drawn. ASCI | and EBCDI C are
ordered by the ASCII and EBCDIC collating sequences, respectively. Di spl ay has the
ordering used in AMPL's di spl ay command (Section A.16): humbers precede literas
and are ordered numerically; literals are sorted by the ASCII collating sequence.

Asan example, you can declare

set PROD ordered by ASCII;

to make AMPL’s ordering of the members of PROD alphabetical, regardless of their order-
ing inthe data. This reordering of the members of PROD has no effect on the solutions of
the model in Figure 1-4a, but it causes AMPL listings of most entities indexed over PROD
to appear in the same order (see A.6.2).

Exercises
5-1. (a) Display the sets

-5/3 .. 5/3 by 1/3
0.. 1by.1

Explain any evidence of rounding error in your computer’s arithmetic.
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(b) Try the following commands from Sections 5.2 and 5.4 on your computer:

ampl : set HUGE = 1..1le7,;
anpl : display card(HUGE);

When AMPL runs out of memory, how many bytes does it say were available? (If your computer
really does have enough memory, try 1. . 1e8.) Experiment to see how big a set HUGE your com-
puter can hold without running out of memory.

5-2. Revisethe model of Exercise 1-6 so that it makes use of two different attribute sets. a set of
attributes that have lower limits, and a set of attributes that have upper limits. Use the same
approach asin Figure 5-1.

5-3. Usethedi spl ay command, together with indexing expressions as demonstrated in Section
5.5, to determine the following sets relating to the diet model of Figures 5-1 and 5-2:

— Foods that have a unit cost greater than $2.00.
— Foods that have a sodium (NA) content of more than 1000.
— Foods that contribute more than $10 to the total cost in the optimal solution.

— Foods that are purchased at more than the minimum level but less than the maximum level in
the optimal solution.

— Nutrients that the optimal diet supplies in exactly the minimum allowable amount.
— Nutrients that the optimal diet supplies in exactly the maximum allowable amount.

— Nutrients that the optimal diet supplies in more than the minimum allowable amount but less
than the maximum allowable amount.

5-4. Thisexercise refers to the multiperiod production model of Figure 4-4.
(a) Suppose that we define two additional scalar parameters,

param Thegi n i nteger >= 1;
param Tend i nteger > Thegin, <= T,

We want to solve the linear program that covers only the weeks from Thegi n through Tend. We
still want the parameters to use the indexing 1. . T, however, so that we don’'t need to change the
data tables every time we try adifferent value for Tbegi n or Tend.

To start with, we can change every occurrence of 1. . T in the variable, objective and constraint
declarations to Thegi n. . Tend. By making these and other necessary changes, create a model
that correctly covers only the desired weeks.

(b) Now suppose that we define a different scalar parameter,

param Tagg i nteger >= 1;

We want to ‘‘aggregate’’ the model, so that one ‘‘period’’ in our LP becomes Tagg weeks long,
rather than one week. This would be appropriate if we have, say, a year of weekly data, which
would yield an LP too large to be convenient for analysis.

To aggregate properly, we must define the availability of hours in each period to be the sum of the
availabilitiesin all weeks of the period:

param avail _agg {t in 1..T by Tagg}
= sum{u in t..t+Tagg-1} avail[u];

The parameters mar ket and r evenue must be similarly summed. Make al the necessary
changes to the model of Figure 4-4 so that the resulting LP is properly aggregated.
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(c) Re-do the models of (a) and (b) to use an ordered set of strings for the periods, asin Figure 5-3.

5-5. Extend the transportation model of Figure 3-1ato a multiperiod version, in which the periods
are months represented by an ordered set of character strings such as" Jan", " Feb" and so forth.
Use inventories at the origins to link the periods.

5-6. Modify the model of Figure 5-3 to merge the Bal ance0 and Bal ance constraints, as in
Figure4-4. Hint: 0. . Tand 1. . T are analogous to

set WEEKSO or der ed;
set WEEKS = {i in WEEKSO: ord(i) > 1} ordered by WEEKSO;



6

Compound Sets and Indexing

Most linear programming models involve indexing over combinations of members
from several different sets. Indeed, the interaction of indexing setsis often the most com-
plicated aspect of a model; once you have the arrangement of sets worked out, the rest of
the model can be written clearly and concisely.

All but the simplest models employ compound sets whose members are pairs, triples,
quadruples, or even longer ‘‘tuples’ of objects. This chapter begins with the declaration
and use of sets of ordered pairs. We concentrate first on the set of all pairs from two sets,
then move on to subsets of all pairs and to ‘‘slices’’ through sets of pairs. Subsequent
sections explore sets of longer tuples, and extensions of AMPL’s set operators and index-
ing expressions to sets of tuples.

The fina section of this chapter introduces sets that are declared in collections
indexed over other sets. An indexed collection of sets often plays much the same role as
a set of tuples, but it represents a somewhat different way of thinking about the formula-
tion. Each kind of set is appropriate in certain situations, and we offer some guidelines
for choosing between them.

6.1 Sets of ordered pairs

An ordered pair of objects, whether numbers or strings, is written with the objects
separated by a comma and surrounded by parentheses:
("PITT", " STL")

("bands", 5)
(3,101)

As the term ‘‘ordered’’ suggests, it makes a difference which object comes first;
("STL","PITT") is not the same as ("PI TT", "STL"). The same abject may
appear both first and second, asin (" PI TT", "PI TT") .

Pairs can be collected into sets, just like single objects. A commarseparated list of
pairs may be enclosed in braces to denote aliteral set of ordered pairs:

91
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{("PITT","STL"), ("PITT","FRE"), ("PI TT", "DET"), (" CLEV", "FRE") }
{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}

Because sets of ordered pairs are often large and subject to change, however, they seldom
appear explicitly in AMPL models. Instead they are described symbolicaly in avariety of
ways.

The set of all ordered pairs from two given sets appears frequently in our examples.
In the transportation model of Figure 3-1a, for instance, the set of all origin-destination
pairsiswritten as either of

{ORI G, DEST}
{i in ORIG j in DEST}

depending on whether the context requires dummy indicesi andj . The multiperiod pro-
duction model of Figure 4-4 uses a set of all pairs from a set of strings (representing prod-
ucts) and a set of numbers (representing weeks):

{PROD, 1..T}
{pinPROD, t in 1. .T}

Various collections of model components, such as the parameter r evenue and the vari-
able Sel | , are indexed over this set. When individual components are referenced in the
model, they must have two subscripts, as in revenue[p,t] or Sell[p,t]. The
order of the subscripts is aways the same as the order of the objects in the pairs; in this
case the first subscript must refer to a string in PROD, and the second to a number in
1..T.

Anindexing expression like{pin PROD, t i n1.. T} isthe AMPL transcription of
aphraselike “fordl pinP,t = 1,..., T" from agebraic notation. Thereisno com-
pelling reason to think in terms of ordered pairs in this case, and indeed we did not men-
tion ordered pairs when introducing the multiperiod production model in Chapter 4. On
the other hand, we can modify the transportation model of Figure 3-1a to emphasize the
role of origin-destination pairs as ‘‘links”’ between cities, by defining this set of pairs
explicitly:

set LINKS = {ORI G DEST};
The shipment costs and amounts can then be indexed over links:

param cost {LINKS} >= 0;
var Trans {LINKS} >= 0;

In the objective, the sum of costs over all shipments can be written like this:

m ninze Total Cost:
sum{(i,j) in LINKS} cost[i,j] * Trans[i,|];

Notice that when dummy indices run over a set of pairslike L1 NKS, they must be defined
inapair like (i,j). Itwould be an error to sum over { k i n LI NKS}. The complete
model is shown in Figure 6-1, and should be compared with Figure 3-1a. The specifica-
tion of the data could be the same asin Figure 3-1b.
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set ORI G # origins
set DEST; # destinations

set LINKS = {ORI G DEST};

param supply {ORIG >= 0; # anmounts available at origins
param demand {DEST} >= 0; # anmounts required at destinations

check: sum{i in ORIG supply[i] = sum{j in DEST} denmand[j];
param cost {LINKS} >= 0; # shipment costs per unit
var Trans {LINKS} >= 0; # units to be shipped
m nimze Total _Cost:
sum{(i,j) in LINKS} cost[i,j] * Trans[i,j];
subject to Supply {i in ORIG:
sum{j in DEST} Trans[i,j] = supply[i];
subj ect to Demand {j in DEST}:
sum{i in ORIG Trans[i,]j]

demand[j];
Figure6-1: Transportation model with al pairs (t r ansp2. nod).

6.2 Subsets and slices of ordered pairs

In many applications, we are concerned only with a subset of all ordered pairs from
two sets. For example, in the transportation model, shipments may not be possible from
every origin to every destination. The shipping costs per unit may be provided only for
the usable origin-destination pairs, so that it is desirable to index the costs and the vari-
ables only over these pairs. In AMPL terms, we want the set LI NKS defined above to
contain just a subset of pairs that are given in the data, rather than al pairs from ORI G
and DEST.

It is not sufficient to declare set LI NKS, because that declares only a set of single
members. At aminimum, we need to say

set LINKS di nen 2;
to indicate that the data must consist of members of ‘‘dimension’’ two — that is, pairs.

Better yet, we can say that LI NKS is a subset of the set of al pairs from ORI G and
DEST:

set LINKS within {OR G DEST};

This has the advantage of making the model’s intent clearer; it also helps catch errorsin
the data. The subsequent declarations of parameter cost, variable Tr ans, and the
objective function remain the same as they are in Figure 6-1. But the components
cost[i,j] and Trans[i,j] will now be defined only for those pairs given in the
data as members of LI NKS, and the expression

sum{(i,j) in LINKS} cost[i,j] * Trans[i,]]

will represent a sum over the specified pairs only.
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How are the constraints written? In the original transportation model, the supply limit
constraint was:

subject to Supply {i in ORIG:
sum{j in DEST} Trans[i,j] = supply[i];

This does not work when LI NKS is a subset of pairs, because for eachi in ORI Git tries
tosum Trans[i,j] over every | in DEST, while Trans[i,j] is defined only for
pairs(i,j) inLlI NKS. If wetry it, we get an error message like this:

error processing constraint Supply[’ GARY']:
invalid subscript Trans[’ GARY',’ FRA']

What we want to say is that for each origin i , the sum should be over all destinations j
suchthat (i, ) isanalowed link. This statement can be transcribed directly to AMPL,
by adding a condition to the indexing expression after sum

subject to Supply {i in ORIG:
sum{j in DEST: (i,j) in LINKS} Trans[i,j] = supply[i];

Rather than requiring this somewhat awkward form, however, AMPL lets us drop the
i n DEST from the indexing expression to produce the following more concise constraint:

subject to Supply {i in ORIG:
sum{(i,j) in LINKS} Trans[i,j] = supply[i];

Because { (i,]) i n LI NKS} appearsin a context where i has already been defined,
AMPL interprets this indexing expression as the set of al j such that (i,j) isin
LI NKS. The demand constraint is handled similarly, and the entire revised version of the
model is shown in Figure 6-2a. A small representative collection of data for this model is
shown in Figure 6-2b; AMPL offers a variety of convenient ways to specify the member-
ship of compound sets and the data indexed over them, as explained in Chapter 9.

Y ou can see from Figure 6-2a that the indexing expression

{(i,j) in LINKS}

means something different in each of the three places where it appears. Its membership
can be understood in terms of atable like this:

FRA DET LAN WN STL FRE LAF

GARY X X X X
CLEV X X X X X X
PITT X X X X

The rows represent origins and the columns destinations, while each pair in the set is
marked by an x. A table for { ORI G, DEST} would be completely filled in with x’s,
while the table shown depicts { LI NKS} for the ‘‘sparse’’ subset of pairs defined by the
datain Figure 6-2b.

At apoint wherei andj arenot currently defined, such asin the objective

mninze Total Cost:
sum{(i,j) in LINKS} cost[i,j] * Trans[i,|];
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set ORI G # origins
set DEST; # destinations

set LINKS within {ORl G DEST};

param supply {ORIG >= 0; # anmounts available at origins

param demand {DEST} >= O; # anmounts required at destinations
check: sum{i in ORIG supply[i] = sum{j in DEST} denmand[j];

param cost {LINKS} >= 0; # shi pment costs per unit

var Trans {LINKS} >= 0; # units to be shipped

m nimze Total _Cost:
sum {(i,j) in LINKS} cost[i,j] * Trans[i,j];
subject to Supply {i in ORIG:
sum {(i,j) in LINKS} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
sum {(i,j) in LINKS} Trans[i,]]

demand[j];
Figure 6-2a: Transportation model with selected pairs (t r ansp3. nod).

param ORI G supply :=
GARY 1400 CLEV 2600 PITT 2900 ;

param DEST: demand : =
FRA 900 DET 1200 LAN 600 WN 400
STL 1700 FRE 1100 LAF 1000 ;

param LINKS: cost :=
GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WN 9
CLEV STL 26 CLEV LAF 17
PITT FRA 24 PITT WN 13 PITT STL 28 PITT FRE 99 ;

Figure 6-2b: Datafor transportation model (t r ansp3. dat ).

theindexing expression{ (i, j) i n LI NKS} representsall the pairsin thistable. But at
apoint wherei has already been defined, such asin the Suppl y constraint

subject to Supply {i in ORIG:
sum {(i,j) in LINKS} Trans[i,j] = supply[il];

the expression { (i, ) i n LI NKS} is associated with just the row of the table corre-
sponding toi . You can think of it as taking a one-dimensional ‘‘slice’” through the table
in the row corresponding to the already-defined first component. Although in this case
the first component is a previously defined dummy index, the same convention applies
when the first component is any expression that can be evaluated to avalid set object; we
could write

{("GARY",j) in LINKS}

for example, to represent the pairsin the first row of the table.
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Similarly, where | has already been defined, such asin the Dermrand constraint

subject to Demand {j in DEST}:
sum{(i,j) in LINKS} Trans[i,j] = demand[j];

the expression { (i, ) i n LI NKS} selects pairs from the column of the table corre-
sponding toj . Pairsin the third column of the table could be specified by { (i, " LAN")
i n LI NKS}.

6.3 Sets of longer tuples

AMPL’s notation for ordered pairs extends in a natural way to triples, quadruples, or
ordered lists of any length. All tuplesin a set must have the same dimension. A set can’t
contain both pairs and triples, for example, nor can the determination as to whether a set
contains pairs or triples be made according to some value in the data.

The multicommodity transportation model of Figure 4-1 offers some examples of how
we can use ordered triples, and by extension longer tuples. In the original version of the
model, the costs and amounts shipped are indexed over origin-destination-product triples:

param cost { ORI G DEST, PROD} >= O0;
var Trans {ORl G DEST, PROD} >= 0;

In the objective, cost and Tr ans are written with three subscripts, and the total cost is
determined by summing over all triples:

m ninze Total Cost:
sum{i in ORIG | in DEST, p in PROD}
cost[i,j,p] * Trans[i,j,p];

The indexing expressions are the same as before, except that they list three sets instead of
two. Anindexing expression that listed k sets would similarly denote a set of k-tuples.

If instead we define L1 NKS as we did in Figure 6-2a, the multicommodity declara-
tions come out like this:

set LINKS within {OR G DEST};

param cost {LINKS, PROD} >= 0;
var Trans {LINKS, PROD} >= 0;

m ni m ze Total _Cost:
sum {(i,j) in LINKS, p in PROD} cost[i,j,p] * Trans[i,],p];

Here we see how a set of triples can be specified as combinations from a set of pairs
(LI NKS) and a set of single members (PROD). Sincecost and Tr ans are indexed over
{ LI NKS, PROD} , their first two subscripts must come from a pair in LI NKS, and their
third subscript from a member of PROD. Sets of longer tuples can be built up in an analo-
gous way.
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Asafina possibility, it may be that only certain combinations of origins, destinations,
and products are workable. Then it makes sense to define a set that contains only the tri-
ples of alowed combinations:

set ROUTES within {ORl G DEST, PROD};
The costs and amounts shipped are indexed over this set:

param cost {ROUTES} >= O0;
var Trans {ROUTES} >= O0;

and in the abjective, the total cost isasum over dl triplesin this set:

m ni m ze Total _Cost:
sum {(i,j,p) in ROUTES} cost[i,j,p] * Trans[i,]j,p];

Individual triples are written, by analogy with pairs, as a parenthesized and comma-
separated list (i, j, p) . Longer lists specify longer tuples.

In the three constraints of this model, the summations must be taken over three differ-
ent slices through the set ROUTES:

subject to Supply {i in ORIG p in PROD}:

sum {(i,j,p) in ROUTES} Trans[i,],p] = supply[i,p];
subject to Demand {j in DEST, p in PROD}:

sum {(i,j,p) in ROUTES} Trans[i,j,p] = demand[j, p];
subject to Multi {i in ORIG j in DEST}:

sum{(i,j,p) in ROUTES} Trans[i,j,p] <= limt[i,j];

In the Suppl y constraint, for instance, indicesi and p are defined before the sum so
{(i,j,p) i n ROUTES} refersto al j such that (i,j,p) isatriplein ROUTES.
AMPL allows comparable slices through any set of tuples, in any number of dimensions
and any combination of coordinates.

When you declare a high-dimensional set such as ROUTES, a phrase like wi t hi n
{ ORI G DEST, PROD} may specify a set with a huge number of members. With 10 ori-
gins, 100 destinations and 100 products, for instance, this set potentially has 100,000
members. Fortunately, AMPL does not create this set when it processes the declaration,
but merely checks that each tuple in the data for ROUTES has its first component in
ORI G, its second in DEST, and its third in PROD. The set ROUTES can thus be handled
efficiently so long as it does not itself contain a huge number of triples.

When using high-dimensiona setsin other contexts, you may have to be more careful
that you do not inadvertently force AMPL to generate a large set of tuples. As an exam-
ple, consider how you could constrain the volume of all products shipped out of each ori-
gin to be less than some amount. Y ou might write either

subject to Supply Al {i in ORIG:
sum{j in DEST, p in PROD: (i,j,p) in ROUTES}
Trans[i,j,p] <= supply_all[i];

or, using the more compact slice notation,
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subject to Supply Al {i in ORIG:
sum {(i,j,p) in ROUTES} Trans[i,j,p] <= supply_all[i];

In the first case, AMPL explicitly generates the set {j i n DEST, p i n PROD} and
checks for membership of (i,j, p) in ROUTES, while in the second case it is able to
use amore efficient approach to finding all (i, j , p) from ROUTES that have agiveni .
In our small examples this may not seem critical, but for problems of realistic size the
slice version may be the only one that can be processed in a reasonable amount of time
and space.

6.4 Operations on sets of tuples

Operations on compound sets are, as much as possible, the same as the operations
introduced for simple sets in Chapter 5. Sets of pairs, triples, or longer tuples can be
combined with uni on, inter, diff, and syndi ff; can be tested by i n and
wi t hi n; and can be counted with car d. Dimensions of operands must match appropri-
ately, so for example you may not form the union of a set of pairs with a set of triples.
Also, compound sets in AMPL cannot be declared as or dered or ci rcul ar, and
hence also cannot be arguments to functions like first and next that take only
ordered sets.

Another set operator, cr 0ss, givesthe set of all pairs of its arguments — the cross or
Cartesian product. Thus the set expression

ORI G cross DEST

represents the same set as the indexing expression { ORI G, DEST} , and
ORI G cross DEST cross PROD

isthesameas{ ORI G, DEST, PROD} .

Our examples so far have been constructed so that every compound set has a domain
within a cross product of previously specified simple sets; LI NKS lies within ORI G
cross DEST, for example, and ROUTES within ORI G cr oss DEST cross PROD.
This practice helps to produce clear and correct models. Nevertheless, if you find it
inconvenient to specify the domains as part of the data, you may define them instead
within the model. AMPL provides an iterated set of operator for this purpose, asin the
following example:

set ROUTES di nen 3;

set PROD = setof {(i,j,p) in ROUTES} p;
set LINKS = setof {(i,j,p) in ROUTES} (i,j);

Like an iterated sum operator, set of is followed by an indexing expression and an
argument, which can be any expression that evaluates to a legal set member. The argu-
ment is evaluated for each member of the indexing set, and the results are combined into
anew set that is returned by the operator. Duplicate members are ignored. Thus these
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expressions for PROD and LI NKS give the sets of al objects p and pairs (i, j) such
that there is some member (i, j, p) in ROUTES.

As with simple sets, membership in a compound set may be restricted by a logical
condition at the end of an indexing expression. For example, the multicommodity trans-
portation model could define

set DEMAND = {j in DEST, p in PROD: demand[j,p] > 0};

so that DEMAND contains only those pairs (j , p) with positive demand for product p at
destination j . Asanother example, suppose that we also wanted to model transfers of the
products from one origin to another. We could simply define

set TRANSF = {ORIG ORI G ;

to specify the set of al pairs of members from ORI G. But this set would include pairs
like ("PITT","PITT") ; to specify the set of all pairs of different members from
ORI G acondition must be added:

set TRANSF = {i1l in ORIG i2in ORIG il <>i?2};

This is another case where two different dummy indices, i 1 and i 2, need to be defined
to run over the same set; the condition selects those pairswherei 1 isnot equal toi 2.

If a set is ordered, the condition within an indexing expression can also refer to the
ordering. We could declare

set ORI G ordered;
set TRANSF = {il in ORIG i2in ORIG ord(il) < ord(i2)};

to define a ‘“‘triangular’’ set of pairs from ORI G that does not contain any pair and its
reverse. For example, TRANSF would contain either of the pairs (" PI TT", " CLEV")
or ("CLEV', "PITT"), depending on which came first in ORI G, but it would not con-
tain both.

Sets of numbers can be treated in a similar way, since they are naturally ordered.
Suppose that we want to accommodate inventories of different ages in the multiperiod
production model of Figure 4-4, by declaring:

set PROD; # products
param T > 0; # nunber of weeks
param A > 0; # maxi num age of inventory

var Inv {PROD,0..T,0..A} >= 0; # tons inventoried

Depending on how initial inventories are handled, we might have to include a constraint
that no inventory in period t can be morethant weeks old:

subject to Too_O d
{pinPROD t in1..T, ainl..A a>t}: Inv[p,t,a] = 0;

In this case, there isasimpler way to write the indexing expression:

subject to Too_O d
{pinPRCD, t in1..T, ain t+l..A}: Inv[p,t,a] = 0O;
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Here the dummy index defined by t i n 1.. T isimmediately used in the phrase a i n
t+1.. A In this and other cases where an indexing expression specifies two or more
sets, the comma-separated phrases are evaluated from left to right. Any dummy index
defined in one phrase is available for use in all subsequent phrases.

6.5 Indexed collections of sets

Although declarations of individual sets are most common in AMPL models, sets may
also be declared in collections indexed over other sets. The principles are much the same
asfor indexed collections of parameters, variables or constraints.

As an example of how indexed collections of sets can be useful, let us extend the mul-
tiperiod production model of Figure 4-4 to recognize different market areas for each prod-
uct. We begin by declaring:

set PROD;
set AREA {PROD};

This says that for each member p of PROD, there is to be a set AREA[ p] ; its members
will denote the market areas in which product p is sold.

The market demands, expected sales revenues and amounts to be sold should be
indexed over areas aswell as products and weeks:

param market {p in PROD, AREA[p], 1..T} >= O;

param revenue {p in PROD, AREA[p], 1..T} >= 0;

var Sell {p in PROD, a in AREA[p], t in 1..T}
>= 0, <= market[p,a, t];

Inthe declarations for mar ket and r evenue, we define only the dummy index p that is
needed to specify the set AREA[ p] , but for the Sel | variables we need to define al the
dummy indices, so that they can be used to specify the upper bound mar ket [ p, a, t] .
This is another example in which an index defined by one phrase of an indexing expres-
sionis used by a subsequent phrase; for each p from the set PROD, a runs over adifferent
set AREA[ p] .

In the objective, the expression r evenue[ p,t] * Sell[p,t] from Figure 4-4
must be replaced by a sum of revenues over al areas for product p:

mexi m ze Total Profit:
sum{p in PROD, t in 1..T}
(sum{a in AREA[p]} revenue[p,a,t]*Sell[p,a,t] -
prodcost [ p] *Make[ p,t] - invcost[p]*Inv[p,t]);

The only other change is in the Bal ance constraints, where Sel | [ p, t] is similarly
replaced by a summation:
subject to Balance {p in PROD, t in 1..T}:

Make[ p,t] + Inv[p,t-1]
= sum{a in AREA[p]} Sell[p,a,t] + Inv[p,t];
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set PROD; # products

set AREA {PROD}; # market areas for each product

param T > 0; # nunber of weeks

paramrate {PROD} > O; # tons per hour produced
param i nv0 {PROD} >= O; # initial inventory
param avail {1.. T} >= 0; # hours avail able in week

param market {p in PROD, AREA[p], 1..T} >= 0;
# I|mt on tons sold in week

param prodcost {PROD} >= 0; # cost per ton produced
param i nvcost {PROD} >= O; # carrying cost/ton of inventory
param revenue {p in PROD, AREA[p], 1..T} >= 0;

# revenue per ton sold

var Make {PROD, 1..T} >= 0; # tons produced

var | nv {PROD, 0. T} >= 0; # tons inventoried

var SeII{plnPRCD ain AREA[p], t in 1..T} # tons sold
>= 0, <= nmarket[p,a, t];

maxi m ze Total Profit:
sum{p in PROD, t in 1..T}
(sum{a in AREA[p]} revenue[p,a,t]*Sell[p,a,t] -
prodcost[p] *Make[p,t] - invcost[p]*Inv[p,t]);

# Total revenue less costs for all products in all weeks

subject to Time {t in 1..T}:
sum{p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

# Total of hours used by all products
# may not exceed hours available, in each week

subject to Init_Inv {p in PROD}: Inv[p,0] = invO[p];
# Initial inventory must equal given val ue

subject to Balance {p in PROD, t in 1..T}:
Make[ p,t] + Inv[p,t-1]
=sum{a in AREA[p]} Sell[p,a,t] + Inv[p,t];

# Tons produced and taken frominventory
# must equal tons sold and put into inventory

Figure 6-3: Multiperiod production with indexed sets (st eel T3. nod).

The complete model is shown in Figure 6-3.
In the data for this model, each set within the indexed collection AREA is specified
like an ordinary set:

set PROD : = bands coils;
set AREA[ bands] := east north ;
set AREA[coils] := east west export ;

The parameters r evenue and mar ket are now indexed over three sets, so their data
values are specified in a series of tables. Since the indexing is over a different set
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param T : = 4,

set PROD : = bands coils;

set AREA[ bands] := east north ;

set AREA[coils] := east west export
paramavail := 1 40 2 40 3 32 4 40
paramrate := bands 200 coils 140
paraminv0O : = bands 10 coils 0

bands 10 coils 11
bands 2.5 coils 3

par am pr odcost
par am i nvcost

paramrevenue =

[ bands, *, *]: 1 2 3 4 =
east 25.0 26.0 27.0 27.0
north 26.5 27.5 28.0 28.5

[coils,*, *]: 1 2 3 4 =
east 30 35 37 39
west 29 32 33 35

export 25 25 25 28
param mar ket =

[ bands, *, *]: 1 2 3 4 =
east 2000 2000 1500 2000
north 4000 4000 2500 4500

[coils,*, *]: 1 2 3 4 =
east 1000 800 1000 1100
west 2000 1200 2000 2300

export 1000 500 500 800

Figure 6-4: Datafor multiperiod production with indexed sets (st eel T3. dat ).

AREA[ p] for each product p, the values are most conveniently arranged as one table for
each product, as shown in Figure 6-4. (Chapter 9 explains the general rules behind this
arrangement.)

We could instead have written this model with a set PRODAREA of pairs, such that
product p will be sold in area a if and only if (p, a) isamember of PRODAREA. Our
formulation in terms of PROD and AREA[ p] seems preferable, however, because it
emphasizes the hierarchical relationship between products and areas. Although the model
must refer in many places to the set of al areas selling one product, it never refers to the
set of all products sold in one area.

As a contrasting example, we can consider how the multicommodity transportation
model might use indexed collections of sets. As shown in Figure 6-5, for each product
we define a set of origins where that product is supplied, a set of destinations where the
product is demanded, and a set of links that represent possible shipments of the product:
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set ORI G # origins
set DEST; # destinations
set PROD; # products

set orig {PROD} within ORI G
set dest {PROD} within DEST,
set links {p in PROD} = orig[p] cross dest[p];

param supply {p in PROD, orig[p]} >= 0; # available at origins
param demand {p in PROD, dest[p]} >= 0; # required at destinations
check {p in PROD}: sum{i in orig[p]} supply[p,il
= sum{j in dest[p]} demand[p,j];

paramlimt {ORl G DEST} >= O;

param cost {p in PROD, links[p]} >= 0; # shipment costs per unit
var Trans {p in PROD, links[p]} >= O; # units to be shipped

m ni m ze Total _Cost:
sum{p in PROD, (i,j) in links[p]} cost[p,i,j] * Trans[p,i,j];

subject to Supply {p in PROD, i in orig[p]}:
sum{j in dest[p]} Trans[p,i,j] = supply[p,i];

subject to Demand {p in PROD, j in dest[p]}:
sum{i in orig[p]} Trans[p,i,j] = demand[p,j];

subject to Multi {i in ORIG | in DEST}:
sum{p in PROD: (i,j) in links[p]} Trans[p,i,j] <=limt[i,j];

Figure 6-5: Multicommodity transportation with indexed sets (rrul t i c. nod).

set orig {PROD} within ORI G
set dest {PROD} within DEST,;
set links {p in PROD} = orig[p] cross dest[p];

The declaration of | i nks demonstrates that it is possible to have an indexed collection
of compound sets, and that an indexed collection may be defined through set operations
from other indexed collections. In addition to the operations previously mentioned, there
are iterated union and intersection operators that apply to sets in the same way that an
iterated sum appliesto numbers. For example, the expressions

union {p in PROD} orig[p]
inter {p in PROD} orig[p]

represent the subset of origins that supply at least one product, and the subset of origins
that supply all products.

The hierarchical relationship based on products that was observed in Figure 6-3 is
seen in most of Figure 6-5 as well. The model repeatedly deals with the sets of all ori-
gins, destinations, and links associated with a particular product. The only exception
comes in the last constraint, where the summation must be over al products shipped viaa
particular link:
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subject to Multi {i in ORIG | in DEST}:
sum{p in PROD: (i,j) inlinks[p]} Trans[p,i,j] <= limt[i,j];

Here it is necessary, following sum to use a somewhat awkward indexing expression to
describe a set that does not match the hierarchical organization.

In general, amost any model that can be written with indexed collections of sets can
also be written with sets of tuples. As our examples suggest, indexed collections are most
suitable for entities such as products and areas that have a hierarchica relationship. Sets
of tuples are preferable, on the other hand, in dealing with entities like origins and desti-
nations that are related symmetrically.

Exercises

6-1. Return to the production and transportation model of Figures 4-6 and 4-7. Using the
di spl ay command, together with indexing expressions as demonstrated in Section 6.4, you can
determine the membership of avariety of compound sets; for example, you can use
anmpl: display {j in DEST, p in PROD: demand[j,p] > 500};
set {j in DEST, p in PROD: demand[j,p] > 500} :=
(DET, coi | s) ( STL, bands) (STL, coi | s) (FRE, coi |l s);
to show the set of all combinations of products and destinations where the demand is greater than
500.
(a) Use di spl ay to determine the membership of the following sets, which depend only on the
data:
— All combinations of origins and products for which the production rate is greater than 150 tons
per hour.
— All combinations of origins, destinations and products for which there is a shipping cost of <
$10 per ton.
— All combinations of origins and destinations for which the shipping cost of coilsis < $10 per
ton.
— All combinations of origins and products for which the production cost per hour is less than
$30,000.
— All combinations of origins, destinations and products for which the transportation cost is more
than 15% of the production cost.
— All combinations of origins, destinations and products for which the transportation cost is more
than 15% but less than 25% of the production cost.
(b) Use di spl ay to determine the membership of the following sets, which depend on the opti-
mal solution aswell as on the data:
— All combinations of origins and products for which there is production of at least 1000 tons.
—All combinations of origins, destinations and products for which there is a nonzero amount
shipped.
— All combinations of origins and products for which more than 10 hours are used in production.
— All combinations of origins and products such that the product accounts for more than 25% of
the hours available at the origin.
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—All combinations of origins and products such that the total amount of the product shipped
from the origin is at least 1000 tons.

6-2. This exercise resembles the previous one, but asks about the ordered-pair version of the
transportation model in Figure 6-2.

(a) Usedi spl ay and indexing expressions to determine the membership of the following sets:
— Origin-destination links that have a transportation cost less than $10 per ton.
— Destinations that can be served by GARY.
— Origins that can serve FRE.
— Linksthat are used for transportation in the optimal solution.
— Linksthat are used for transportation from CLEV in the optimal solution.
— Destinations to which the total cost of shipping, from all origins, exceeds $20,000.

(b) Usethe di spl ay command and the set of operator to determine the membership of the fol-
lowing sets:

— Destinations that have a shipping cost of more than 20 from any origin.
— All destination-origin pairs (j , i ) such that the link fromi toj isused in the optimal solu-
tion.
6-3. Usedi spl ay and appropriate set expressions to determine the membership of the following
sets from the multiperiod production model of Figures 6-3 and 6-4:
— All market areas served with any of the products.

— All combinations of products, areas and weeks such that the amount actually sold in the optimal
solution equals the maximum that can be sold.

— All combinations of products and weeks such that the total sold in all areas is greater than or
equal to 6000 tons.
6-4. Totry the following experiment, first enter these declarations:

anpl: set Q={1..10,1..10,1..10,1..10,1..10,1..10};

ampl: set Swithin Q

anpl : data;

anpl: set S:=123345 234456 345567 45671829;

(a) Now try the following two commands:
display S
display {(a,b,c,d,e,f) in Q (a,b,c,d, e, f) in S};

The two expressions in these commands represent the same set, but do you get the same speed of
response from AMPL? Explain the cause of the difference.

(b) Predict the result of the command di spl ay Q

6-5. Thisexercise asks you to reformulate the diet model of Figure 2-1 in avariety of ways, using
compound sets.

(a) Reformulate the diet model so that it uses a declaration

set G VE within {NUTR, FOOD};

to define asubset of pairs (i, j ) suchthat nutrienti can befoundinfoodj .
(b) Reformulate the diet model so that it uses a declaration
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set FN {NUTR} wi thin FOOD;

to define, for each nutrient i , theset FN[ i ] of all foods that can supply that nutrient.
(c) Reformulate the diet model so that it uses a declaration

set NF {FOOD} within NUTR;

to define, for each food j , the set NF[ j ] of al nutrients supplied by that food. Explain why you
find this formulation more or less natural and convenient than the onein (b).

6-6. Reread the suggestions in Section 6.3, and complete the following reformulations of the
multicommodity transportation model:

(a) Use asubset LI NKS of origin-destination pairs.

(b) Use a subset ROUTES of origin-destination-product triples.

(c) Use a subset MARKETS of destination-product pairs, with the property that product p can be
sold at destination j if and only if (j , p) isin the subset.

6-7. Carry through the following two suggestions from Section 6.4 for enhancements to the multi-
commodity transportation problem of Figure 4-1.

(a) Add adeclaration
set DEMAND = {j in DEST, p in PROD. demand[j,p] > 0};

and index the variables over { ORI G DEMAND}, so that variables are defined only where they
might be needed to meet demand. Make all of the necessary changes in the rest of the model to use
this set.

(b) Add the declarations

set LINKS within {ORl G DEST};
set TRANSF = {i1 in ORIG i2in ORG il <>i2};

Define variables over LI NKS to represent shipments to destinations, and over TRANSF to repre-
sent shipments between origins. The constraint at each origin now must say that total shipments
out — to other origins as well as to destinations — must equal supply plus shipments in from other
origins. Complete the formulation for this case.

6-8. Reformulate the model from Exercise 3-3(b) so that it uses a set LI NK1 of allowable plant-
mill shipment pairs, and a set L1 NK2 of allowable mill-factory shipment pairs.

6-9. As chairman of the program committee for a prestigious scientific conference, you must
assign submitted papers to volunteer referees. To do so in the most effective way, you can formu-
late an LP model aong the lines of the assignment model discussed in Chapter 3, but with a few
extratwists.

After looking through the papers and the list of referees, you can compile the following data:
set Papers;

set Referees;
set Categories;

set PaperKind wi thin {Papers, Categories};
set WIling within {Referees, Categories};

The contents of the first two sets are self-evident, while the third set contains subject categories
into which papers may be classified. The set Paper Ki nd contains a pair ( p, c) if paper p falls
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into category c; in general, a paper can fit into severa categories. The set Wl | i ng contains a
pair (r, c) if refereer iswilling to handle papersin category c.
(a) What is the dimension of the set

{(r,c) in WIlling, (p,c) in PaperKind}

and what is the significance of the tuples contained in this set?
(b) Based on your answer to (a), explain why the declaration

set CanHandl e = setof {(r,c) in WIling, (p,c) in PaperKind} (r,p);

givesthe set of pairs(r, p) such that refereer can be assigned paper p.

Your model could use parameters ppr ef and variables Revi ew indexed over CanHandl e;
ppref[r, p] would be the preference of referee r for paper p, and Revi ew r, p] would be 1
if referee r were assigned paper p, or 0 otherwise. Assuming higher preferences are better, write
out the declarations for these components and for an objective function to maximize the sum of
preferences of al assignments.

(c) Unfortunately, you don’t have the referees’ preferences for individual papers, since they haven’t
seen any papersyet. What you have are their preferences for different categories:

param cpref {WIlling} integer >= 0, <= 5;
Explain why it would make sense to replace ppr ef [ r, p] inyour objective by
max {(r,c) in WIlling: (p,c) in PaperKind} cpref[r,c]
(d) Finally, you must define the following parameters that indicate how much work is to be done:

param nreferees integer > 0; # referees needed per paper
param mi nwork integer > O; # mn papers to each referee
param maxwork i nteger > minwork; # max papers to each referee

Formulate the appropriate assignment constraints. Complete the model, by formulating constraints
that each paper must have the required number of referees, and that each referee must be assigned
an acceptable number of papers.
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Parameters and Expressions

A large optimization model invariably uses many numerical values. As we have
explained before, only a concise symbolic description of these values need appear in an
AMPL model, while the explicit data values are given in separate data statements, to be
described in Chapter 9.

In AMPL a single named numerical value is calleghamameter. Although some
parameters are defined as individual scalar values, most occur in vectors or matrices or
other collections of numerical values indexed over sets. We will thus loosely refer to an
indexed collection of parameters as “a parameter” when the meaning is clear. To begin
this chapter, Section 7.1 describes the rules for declaring parameters and for referring to
them in altAMPL model.

Parameters and other numerical values are the building blocks of the expressions that
make up a model’s objective and constraints. Sections 7.2 and 7.3 describe arithmetic
expressions, which have a numerical value, and logical expressions, which evaluate to
true or false. Along with the standard unary and binary operators of conventional alge-
braic notationAMPL provides iterated operators lisaimandpr od, and a conditional
(i f -t hen-el se) operator that chooses between two expressions, depending on the truth
of a third expression.

The expressions in objectives and constraints necessarily involve variables, whose
declaration and use will be discussed in Chapter 8. There are several common uses for
expressions that involve only sets and parameters, however. Section 7.4 describes how
logical expressions are used to test the validity of data, either directly in a parameter dec-
laration, or separately ineheck statement. Section 7.5 introduces features for defining
new parameters through arithmetic expressions in previously declared parameters and
sets, and 7.6 describes randomly-generated parameters.

Although the key purpose of parameters is to represent numerical values, they can
also represent logical values or arbitrary strings. These possibilities are covered in Sec-
tions 7.7 and 7.8, respectivel AMPL provides a range of operators for strings, but as
they are most often used AMPL commands and programming rather than in models, we
defer their introduction to Section 13.7.
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7.1 Parameter declarations

A parameter declaration describes certain data required by a model, and indicates how
the model will refer to data values in subsequent expressions.
The simplest parameter declaration consists of the keypaardmand a name:

param T,

At any point after this declaratiom,can be used to refer to a numerical value.
More often, the name in a parameter declaration is followed by an indexing expres-
sion:

param avail {1..T};
par am demand {DEST, PROD} ;
param revenue {p in PROD, AREA[p], 1..T};

One parameter is defined for each member of the set specified by the indexing expres-
sion. Thus a parameter is uniquely determined by its name and its associated set mem-
ber; throughout the rest of the model, you would refer to this parameter by writing the
name and bracketed “subscripts’:

avail [i]
demand[j, p]
revenue[ p, a, t]

If the indexing is over a simple set of objects as described in Chapter 5, there is one sub-
script. If the indexing is over a set of pairs, triples, or longer tuples as described in Chap-
ter 6, there must be a corresponding pair, triple, or longer list of subscripts separated by
commas. The subscripts can be any expressions, so long as they evaluate to members of
the underlying index set.

An unindexed parameter is a scalar value, but a parameter indexed over a simple set
has the characteristics of a vector or an array; when the indexing is over a sequence of
integers, say

param avail {1..T};

the individual subscripted parametersavai | [ 1] ,avai | [2],...,avai | [ T], and
there is an obvious analogy to the vectors of linear algebra or the arrays of a program-
ming language like Fortran or @QMPL’s concept of a vector is more general, however,
since parameters may also be indexed over sets of strings, which need not even be
ordered. Indexing over sets of strings is best suited for parameters that correspond to
places, products and other entities for which no numbering is especially natural. Indexing
over sequences of numbers is more appropriate for parameters that correspond to weeks,
stages, and the like, which by their nature tend to be ordered and numbered; even for
these, you may prefer to use ordered sets of strings as described in Section 5.6.

A parameter indexed over a set of pairs is like a two-dimensional array or matrix. If
the indexing is over all pairs from two sets, as in
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set ORI G
set DEST,
param cost {ORl G DEST};

then there is a parameteost[i,j] for every combination of from ORI G and]j
from DEST, and the analogy to a matrix is strongest — although again the subscripts are
more likely to be strings than numbers. If the indexing is over a subset of pairs, however:

set ORI G

set DEST;

set LINKS within {ORl G DEST};
param cost {LI NKS};

thencost [i, ] ] exists only for those from ORI Gandj from DEST such tha(i, j)

is a member of | NKS. In this case, you can think obst as being a “sparse” matrix.
Similar comments apply to parameters indexed over triples and longer tuples, which

resemble arrays of higher dimension in programming languages.

7.2 Arithmetic expressions

Arithmetic expressions iAMPL are much the same as in other computer languages.
Literal numbers consist of an optional sign preceding a sequence of digits, which may or
may not include a decimal point (for exampl@&,7 or 2. 71828 or +. 3). At the end of
a literal there may also be an exponent, consisting of the tgtt®y e, or E and an
optional sign followed by digitsle30 or 7. 66439D- 07).

Literals, parameters, and variables are combined into expressions by the standard
operations of additionH), subtraction+), multiplication ¢ ), division (), and exponen-
tiation (). The familiar conventions of arithmetic apply. Exponentiation has higher
precedence than multiplication and division, which have higher precedence than addition
and subtraction; successive operations of the same precedence group to the left, except
for exponentiation, which groups to the right. Parentheses may be used to change the
order of evaluation.

Arithmetic expressions may also use tliev operator, which returns the truncated
quotient when its left operand is divided by its right operandntie operator, which
computes the remainder; and thess operator, which returns its left operand minus its
right operand if the result is positive, or zero otherwise. For purposes of precedence and
grouping,AMPL treatsdi v andnod like division, and ess like subtraction.

A list of arithmetic operators (and logical operators, to be described shortly) is given
in Table 7-1. As much as possibdPL follows common programming languages in its
choice of operator symbols, such *agor multiplication and/ for division. There is
sometimes more than one standard, however, as with exponentiation, where some lan-
guages usé while others use*. In this and other caseSMPL provides alternate
forms. Table 7-1 shows the more common forms to the left, and the alternatives (if any)
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Usual alternative type of type of
style style operands result
i f-then-el se logical, arithmetic  arithmetic
or [ ] logical logical
exists forall logical logical
and && logical logical
not (unary) ! logical logical
< <= = <> > >= <<= == Il= > >= arithmetic logical
in notin object, set logical
+ - less arithmetic arithmetic
sum prod min max arithmetic arithmetic
* [/ div nod arithmetic arithmetic
+ - (unary) arithmetic arithmetic
- ** arithmetic arithmetic

Exponentiation and f -t hen-el se are right-associative; the other operators are
left-associative. The logical operandidf-t hen-el se appears after f, and the
arithmetic operands aftethen and (optionallykel se.

Table 7-1: Arithmetic and logical operators, in increasing precedence.

to the right; you can mix them as you like, but your models will be easier to read and
understand if you are consistent in your choices.

Another way to build arithmetic expressions is by applying functions to other expres-
sions. A function reference consists of a name followed by a parenthesized argument or
comma-separated list of arguments; an arithmetic argument can be any arithmetic expres-
sion. Here are a few examples, which compute the minimum, absolute value, and square
root of their arguments, respectively:

m n(T, 20)
abs(sum{i in ORIG supply[i] - sum{j in DEST} demand[j])
sqrt((tan[j]-tan[k])"2)

Table 7-2 lists the built-in arithmetic functions that are typically found in models. Except
for m n andmax, the names of any of these functions may be redefined, but their original
meanings will become inaccessible. For example, a model may declare a parameter
namedt an as in the last example above, but then it cannot also refer to the function
t an.

The set functionsar d andor d, which were described in Chapter 5, also produce an
arithmetic result. In additionAMPL provides several “rounding” functions (Section
11.3) and a variety of random-number functions (Section 7.6 below). A mechanism for
“importing” functions defined by your own programs is described in Appendix A.22.
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abs(x)
acos(x)
acosh(x)
asi n(x)
asi nh(x)
at an(x)
atan2(y, x)
at anh(x)
cos(x)
cosh(x)
exp(x)
I'og(x)

1 0g10(X)

max(x,Yy, ...)
mn(x,y, ..)

si n(x)
si nh(x)
sqrt (X
tan(x)
tanh(x)

absolute value|x|

inverse cosine, cos(x)

inverse hyperbolic cosine, cost(x)
inverse sine, sin'(x)

inverse hyperbolic sine, sinh(x)
inverse tangent, tad (x)

inverse tangent, tan (y/x)

inverse hyperbolic tangent, tant(x)
cosine

hyperbolic cosine

exponentialg*

natural logarithm, log(x)

common logarithm, log,(x)
maximum (2 or more arguments)
minimum (2 or more arguments)
sine

hyperbolic sine

square root

tangent

hyperbolic tangent

Table 7-2: Built-in arithmetic functions for use in models.

Finally, the indexed operators suchzaandIl from algebraic notation are generalized
in AMPL by expressions for iterating operations over sets. In particular, most large-scale
linear programming models contain iterated summations:

in ORIG supply[i]

sum {i

The keywordsummay be followed by any indexing expression. The subsequent arith-
metic expression is evaluated once for each member of the index set, and all the resulting
values are added. Thus the sum above, from the transportation model of Figure 3-1a, rep-
resents the total supply available, at all origins. $hmoperator has lower precedence
than*, so the objective of the same model can be written

sum {i

in ORG j

in DEST} cost[i,j] * Trans[i,]]

to represent the total @fost[i,j] * Trans[i,j] over all combinations of origins
and destinations. The precedencesofmis higher than that of or -, however, so for

the objective of the multiperiod production model in Figure 6-3 we must write

sum{p in PROD, t

in 1. .T}
(sum{a in AREA[ p]} revenue[p,a,t]*Sell[p,a,t] -
prodcost [ p] *Make[ p,t] - invcost[p]*Inv[p,t]);

The outer sum applies to the entire parenthesized expression following it, while the inner
sum applies only to the termevenue[ p, a,t] * Sel I [p, a,t].
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Other iterated arithmetic operators gmeod for multiplication, m n for minimum,
andmax for maximum. As an example, we could use

max {i in ORIG supply[i]

to describe the greatest supply available at any origin.

Bear in mind that, while aaAMPL arithmetic function or operator may be applied to
variables as well as to parameters or to numeric members of sets, most operations on vari-
ables are not linearAMPL’s requirements for arithmetic expressions in a linear program
are described in Section 8.2. Some of the nonlinear functions of variables that can be
handled by certain solvers are discussed in Chapter 18.

7.3 Logical and conditional expressions

The values of arithmetic expressions can be tested against each other by comparison
operators:

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

The result of a comparison is either “true” or “false”. Thiis> 1 is true if the parame-
terT has a value greater than 1, and is false otherwise; and

sum{i in ORIG supply[i] = sum{j in DEST} dermand[j]

is true if and only if total supply equals total demand.

Comparisons are one exampleAdfiPL’s logical expressions, which evaluate to true
or false. Set membership tests using andwi t hi n, described in Section 5.4, are
another example. More complex logical expressions can be built up with logical opera-
tors. Theand operator returns true if and only if both its operands are true, while
returns true if and only if at least one of its operands is true; the unary opwvator
returns false for true and true for false. Thus the expression

T>0and T <= 10

is only true ifT lies in the interval [0, 10], while the following from Section 5.5,

i in MAXREQ or n_nmin[i] >0
is true ifi is a member oMAXREQ, orn_mi n[i] is positive, or both. Where several
operators are used together, any comparison, membership or arithmetic operator has

higher precedence than the logical operatang] has higher precedence than, while
not has higher precedence than either. Thus the expression

not i in MAXREQ or n_min[i] > 0 and n_nin[i] <= 10



SECTION 7.3 LOGICAL AND CONDITIONAL EXPRESSIONS 115

is interpreted as

(not (i in MAXREQ) or ((n_mn[i] > 0) and (n_mn[i] <= 10))
Alternatively, thenot i n operator could be used:

i not in MAXREQ or n_nmin[i] > 0 and n_mn[i] <= 10

The precedences are summarized in Table 7-1, which also gives alternative forms.
Like + and*, the operatorer andand have iterated versions. The iteratd is
denoted byexi st s, and the iteratednd by f or al | . For example, the expression

exists {i in ORIG demand[i] > 10
is true if and only if at least one origin has a demand greater than 10, while
forall {i in ORIG demand[i] > 10

is true if and only if every origin has demand greater than 10.

Another use for a logical expression is as an operand to the conditiarfait dren-
el se operator, which returns one of two different arithmetic values depending on
whether the logical expression is true or false. Consider the two collections of inventory
balance constraints in the multiperiod production model of Figure 5-3:

subj ect to Bal anceO {p in PROD}:
Make[ p, first (VWEEKS)] + invO[p]
= Sell[p,first(WEEKS)] + Inv[p,first(WEEKS)];

subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
Make[ p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];

The Bal ance0 constraints are basically thBal ance constraints witht set to
first(VEEKS). The only difference is in the second term, which represents the previ-
ous week’s inventory; it is given asivO[ p] for the first week (in th®al ance0 con-
straints) but is represented by the varidbd@|[ p, prev(t)] for subsequent weeks (in
theBal ance constraints). We would like to combine these constraints into one declara-
tion, by having a term that takes the valuevO[ p] whent is the first week, and takes
the valud nv[ p, prev(t)] otherwise. Such a term is writtenAMPL as:

if t = first(WEEKS) then invO[p] else Inv[p,prev(t)]

Placing this expression into the constraint declaration, we can write

subject to Balance {p in PROD, t in WEEKS}:
Make[ p,t] +
(if t =first(WEEKS) then invO[p] else Inv[p,prev(t)])
= Sell[p,t] + Inv[p,t];

This form communicates the inventory balance constraints more concisely and directly
than two separate declarations.
The general form of a conditional expression is

if athen b else c
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wherea is a logical expression. #evaluates to true, the conditional expression takes the

value ofb; if ais false, the expression takes the value. off ¢ is zero, thesl se ¢ part

can be dropped. Most oftérandc are arithmetic expressions, but they can also be string

or set expressions, so long as both are expressions of the same kind. Bbeauard

el se have lower precedence than any other operators, a conditional expression needs to

be parenthesized (as in the example above) unless it occurs at the end of a statement.
AMPL also has anf -t hen-el se for use in programming; like the conditional state-

ments in many programming languages, it executes one or another block of statements

depending on the truth of some logical expression. We describe it withAdtiRer pro-

gramming features in Chapter 13. Tihe-t hen-el se that we have described here is

not a statement, but rather an expression whose value is conditionally determined. It

therefore belongs inside a declaration, in a place where an expression would normally be

evaluated.

7.4 Restrictions on parameters

If T is intended to represent the number of weeks in a multiperiod model, it should be
an integer and greater than 1. By including these conditicfis meclaration,

param T > 1 integer;

you instructAMPL to reject your data if you inadvertently Jeto 1:

error processing param T:
failed check: paramT =1
is not > 1;

orto 2.5:

error processing paramT:
failed check: paramT = 2.5
is not an integer;

AMPL will not send your problem instance to a solver as long as any errors of this kind
remain.

In the declaration of an indexed collection of parameters, a simple restriction such as
i nt eger or >= 0 applies to every parameter defined. Our examples often use this
option to specify that vectors and arrays are nonnegative:

par am dermand {DEST, PROD} >= 0;

If you include dummy indices in the indexing expression, however, you can use them to
specify a different restriction for each parameter:

param f _min {FOOD} >= O;
paramf_max {j in FOOD} >= f _mn[j];
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The effect of these declarations is to define a pair of paramkterax[j] >=
f_min[j] foreveryj inthe seFQOOD.

A restriction phrase for a parameter declaration may be the imoréger or
bi nary or a comparison operator followed by an arithmetic expression. While
i nt eger restricts a parameter to integral (whole-number) vahiesar y restricts it to
zero or one. The arithmetic expression may refer to sets and parameters previously
defined in the model, and to dummy indices defined by the current declaration. There
may be several restriction phrases in the same declaration, in which case they may
optionally be separated by commas.

In special circumstances, a restriction phrase may even refer to the parameter in
whose declaration it appears. Some multiperiod production models, for example, are
defined in terms of a parameteunul ati ve_mar ket [ p, t] that represents the
cumulative demand for produptin weeks 1 through. Since cumulative demand does
not decrease, you might try to write a restriction phrase like this:

param cumnul ative_market {p in PROD, t in 1..T}
>= cunul ative_market[p,t-1]; # ERROR

For the parametersunul ati ve_mar ket [ p, 1], however, the restriction phrase will

refer tocumul ati ve_mar ket [ p, 0] , which is undefinedAMPL will reject the decla-

ration with an error message. What you need here again is a conditional expression that
handles the first period specially:

param cunul ative_market {p in PROD, t in 1..T}
>= if t =1 then 0 else cunulative_market[p,t-1];

The same thing could be written a little more compactly as

param cunul ative_market {p in PROD, t in 1..T}
>= if t > 1 then cunulative_narket[p,t-1];

since “el se 0” is assumed. Almost always, some formidf-t hen-el se expression
is needed to make this kind of self-reference possible.

As you might suspect from this last example, sometimes it is desirable to place a more
complex restriction on the model's data than can be expressed by a restriction phrase
within a declaration. This is the purpose of theeck statement. For example, in the
transportation model of Figure 3-1a, total supply must equal total demand:

check: sum{i in ORIG supply[i] = sum{j in DEST} demand[j];

The multicommodity version, in Figure 4-1, uses an indextezt k to say that total sup-
ply must equal total demand for each product:

check {p in PROD}:
sum{i in ORIG supply[i,p] = sum{j in DEST} demand[j, p];

Here the restriction is tested once for each memlzdrPROD. If the check fails for any
memberAMPL prints an error message and rejects all of the data.

You can think of theheck statement as specifying a kind of constraint, but only on
the data. The restriction clause is a logical expression, which may use any previously
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defined sets and parameters as well as dummy indices defined in the statement’s indexing
expression. After the data values have been read, the logical expression must evaluate to
true; if an indexing expression has been specified, the logical expression is evaluated sep-
arately for each assignment of set members to the dummy indices, and must be true for
each.

We strongly recommend the use of restriction phraseghadk statements to vali-
date a model's data. These features will help you to catch data errors at an early stage,
when they are easy to fix. Data errors not caught will, at best, cause errors in the genera-
tion of the variables and constraints, so that you will get some kind of error message from
AMPL. In other cases, data errors lead to the generation of an incorrect linear program. If
you are fortunate, the incorrect LP will have a meaningless optimal solution, so that —
possibly after a good deal of effort — you will be able to work backward to find the error
in the data. At worst, the incorrect LP will have a plausible solution, and the error will go
undetected.

7.5 Computed parameters

It is seldom possible to arrange that the data values available to a model are precisely
the coefficient values required by the objective and constraints. Even in the simple pro-
duction model of Figure 1-4, for example, we wrote the constraint as

sum{p in PROD} (1l/rate[p]) * Make[p] <= avail;

because production rates were given in tons per hour, while the coefficidak ef p]
had to be in hours per ton. Any parameter expression may be used in the constraints and
objective, but the expressions are best kept simple. When more complex expressions are
needed, the model is usually easier to understand if new, computed parameters are
defined in terms of the data parameters.

The declaration of a computed parameter has an assignment phrase, which resembles
the restriction phrase described in the previous section except for the use gbenator
to indicate that the parameter is being set equal to a certain expression, rather than merely
being restricted by an inequality. As a first example, suppose that the data values pro-
vided to the multicommodity transportation model of Figure 4-1 consist of the total
demand for each product, together with each destination’s share of demand. The destina-
tions’ shares are percentages between zero and 100, but their sum over all destinations
might not exactly equal 100%, because of rounding and approximation. Thus we declare
data parameters to represent the shares, and a computed parameter equal to their sum:

param share {DEST} >= 0, <= 100;
paramtot_sh = sum{j in DEST} share[j];

We can then declare a data parameter to represent total demands, and a computed param-
eter that equals demand at each destination:
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param t ot _dem { PROD} >= O;
param dermand {j in DEST, p in PROD}
= share[j] * tot_den{p] / tot_sh;

The division byt ot _sh acts as a correction factor for a sum not equal to 100%. Once
demand has been defined in this way, the model can use it as in Figure 4-1:

subject to Demand {j in DEST, p in PROD}:
sum{i in ORIG Trans[i,],p] = demand[j, p];

We could avoid computed parameters by substituting the formulasoforsh and
demand[ j , p] directly into this constraint:

subject to Demand {j in DEST, p in PROD}:
sum{i in ORIG Trans[i,j,p]
= share[j] * tot_den{p] / sum{k in DEST} share[K];

This alternative makes the model a little shorter, but the computation of the demand and
the structure of the constraint are both harder to follow.

As another example, consider a scenario for the multiperiod production model (Figure
4-4) in which minimum inventories are computed. Specifically, suppose that the inven-
tory of productp for weekt must be at least a certain fractionmnefr ket [ p, t +1] , the
maximum that can be sold in the following week. We thus use the following declarations
for the data to be supplied:

param frac > O;
param mar ket {PROD, 1..T+1} >= 0;

and then declare

parammninv {p in PROD, t in 0..T} = frac * market[p,t+1];
var Inv {pin PROD, t in O0..T} >= mninv[p,t];

to define and use parametersni nv[ p, t] that represent the minimum inventory of
productp for weekt . AMPL keeps alk definitions of parameters up to date throughout
a session. Thus for example if you change the valukrefc the values of all the
m ni nv parameters automatically change accordingly.

If you define a computed parameter as in the examples above, then you cannot also
specify a data value for it. An attempt to do so will result in an error message:

m ninv was defined in the nodel
context: param >>> mninv <<< := bands 2 3000

However, there is an alternative way in which you can define an initial value for a param-
eter but allow it to be changed later.

If you define a parameter using ttief aul t operator in place of, then the parame-
ter is initialized rather than defined. Its value is taken from the value of the expression to
the right of thedef aul t operator, but does not change if the expression’s value later
changes. Initial values can be overridden by data statements, and they also may be
changed by subsequent assignment statements. This feature is most useful for writing
AMPL scripts that update certain values repeatedly, as shown in Section 13.2.
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If you define a parameter using the operatef aul t in place of=, then you can
specify values in data statements to override the ones that would otherwise be computed.
For instance, by declaring

parammninv {pin PROD, t in 0..T}
default frac * market[p,t+1];

you can allow a few exceptional minimum inventories to be specified as part of the data
for the model, either in a list:

param mninv :=
bands 2 3000
coils 2 2000
coils 3 2000 ;

orin a table:
par am mar ket : 1 2 3 4 =
bands . 3000 .
coils . 2000 2000

(AMPL uses “ " in a data statement to indicate an omitted entry, as explained in Chapter
9and A.12.2)

The expression that gives the default value of a parameter is evaluated only when the
parameter’s value is first needed, such as when an objective or constraint that uses the
parameter is processed bgal ve command.

In most= anddef aul t phrases, the operator is followed by an arithmetic expression
in previously defined sets and parameters (but not variables) and currently defined
dummy indices. Some parameters in an indexed collection may be given a computed or
default value in terms of others in the same collection, however. As an example, you can
smooth out some of the variation in the minimum inventories by definingithé nv
parameter to be a running average like this:

parammninv {p in PROD, t in O0..T} =
if t =0 then inv0[p]
else 0.5 * (mninv[p,t-1] + frac * market[p,t+1]);

The values ofri ni nv for week O are set explicitly to the initial inventories, while the
values for each subsequent weelare defined in terms of the previous week’s values.
AMPL permits any “recursive” definition of this kind, but will signal an error if it detects
a circular reference that causes a parameter’'s value to depend directly or indirectly on
itself.

You can use the phrases defined in this section together with the restriction phrases of
the previous section, to further check the values that are computed. For example the dec-
laration

parammninv {p in PROD, t in 0..T}
= frac * market[p,t+1], >= 0;
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will cause an error to be signaled if the computed value of any aof thienv parameters
is negative. This check is triggered whenever&tPL session usesi ni nv for any
purpose.

7.6 Randomly generated parameters

When you're testing out a model, especially in the early stages of development, you
may find it convenient to let randomly generated data stand in for actual data to be
obtained later. Randomly generated parameters can also be useful in experimenting with
alternative model formulations or solvers.

Randomly generated parameters are like the computed parameters introduced in the
preceding section, except that their defining expressions are made random by use of
AMPL’s built-in random number generation functions listed in Table A-3. As an example
of the simplest case, the individual parameteni | representing hours available in
st eel . nod may be defined to equal a random function:

param avail _mean > O;
param avail _variance > 0, < avail _nean / 2;

param avail = max(Normal (avail _mean, avail _variance), 0);

Adding some indexing gives a multi-stage version of this model:

param avai |l {STAGE} =
max( Nor nal (avai | _nean, avail _variance), 0);

For each stagse, this givesavai | [ s] a different random value from the same random
distribution. To specify stage-dependent random distributions, you would add indexing
to the mean and variance parameters as well:

param avai |l _nean {STAGE} > O;
param avail _variance {s in STAGE} > 0, < avail _nean[s] / 2;

param avail {s in STAGE} =
max( Nor nal (avai | _nean[s], avail _variance[s]), 0);

Themax( ..., 0) expression is included to handle the rare case in which the normal distri-
bution with a positive mean returns a negative value.

More general ways of randomly computing parameters arise naturally from the pre-
ceding section’s examples. In the multicommodity transportation problem, you can
define random shares of demand:

param share {DEST} = Uniforn{0, 100);
paramtot_sh = sum{j in DEST} share[j];

param t ot _dem { PROD} >= 0;
param dermand {j in DEST, p in PROD}
= share[j] * tot_den{p] / tot_sh;
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Parameters ot _sh anddenand then also become random, because they are defined in
terms of random parameters. In the multiperiod production model, you can define the
demand quantitiesar ket [ p, t] in terms of an initial value and a random amount of
increase per period:

param mar ket 1 { PROD} >= O;
param max_i ncr { PROD} >= 0;

param market {p in PROD, t in 1..T+1} =
if t =1 then market1[p]
el se Unifornm( 0, max_incr) * market[p,t-1];

A recursive definition of this kind provides a way of generating simple random processes
over time.

All of the AMPL random functions are based on a uniform random number generator
with a very long period. When you stamPL or give ar eset command, however, the
generator is reset and the “random” values are the same as before. You can request dif-
ferent values by changing theviPL optionr andseed to some integer other than its
default value of 1; the command for this purpose is

option randseed n;

wheren is some integer value. Nonzero values give sequences that repeat each time

AMPL is reset. A value of O reque#MPL to pick a seed based on the current value of

the system clock, resulting (for practical purposes) in a different seed at each reset.
AMPL’s r eset dat a command, when applied to a randomly computed parameter,

also causes a new sample of random values to be determined. The use of this command

is discussed in Section 11.3.

7.7 Logical parameters

Although parameters normally represent numeric values, they can optionally be used
to stand for true-false values or for character strings.

The current version &MPL does not support a full-fledged “logical” type of param-
eter that would stand for only the values true and false, but a parameter bf hgoey
may be used to the same effect. As an illustration, we describe an application of the pre-
ceding inventory example to consumer goods. Certain products in each week may be
specially promoted, in which case they require a higher inventory fraction. Using param-
eters of typdi nar y, we can represent this situation by the following declarations:

paramfr_reg > 0; # regular inventory fraction
param fr_pro > fr_reg; # fraction for pronoted itens

param pronote {PROD, 1..T+1} binary;
param mar ket {PROD, 1..T+1} >= 0;
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The binary parameters onot e[ p, t] are 0 when there is no promotion, and 1 when
there is a promotion. Thus we can define the minimum-inventory parameters by use of
ani f -t hen-el se expression as follows:

parammninv {pin PROD, t in0..T} =
(if pronmote[p,t] = 1 then fr_pro else fr_reg)
* market[p,t+1];

We can also say the same thing more concisely:

parammninv {p in PROD, t in0..T} =
(if promote[p,t] then fr_pro else fr_reg) * market[p,t+1];

When an arithmetic expression lige onot e[ p, t ] appears where a logical expression

is required AMPL interprets any nonzero value as true, and zero as false. You do need to
exercise a little caution to avoid being tripped up by this implicit conversion. For exam-
ple, in Section 7.4 we used the expression

if t =1 then 0 else cunulative_nmarket[p,t-1]

If you accidentally write
if t then 0 el se cunul ative_nmarket[p,t-1] # DI FFERENT

it's perfectly legal, but it doesn’t mean what you intended.

7.8 Symbolic parameters

You may permit a parameter to represent character string values, by including the
keywordsynbol i ¢ in its declaration. A symbolic parameter’s values may be strings or
numbers, just like a set's members, but the string values may not participate in arithmetic.

A major use of symbolic parameters is to designate individual set members that are to
be treated specially. For example, in a model of traffic flow, there is a set of intersec-
tions, two of whose members are designated as the entrance and exit. Symbolic parame-
ters can be used to represent these two members:

set | NTER

param entr synbolic in | NTER;
paramexit synbolic in INTER <> entr;

In the data statements, an appropriate string is assigned to each symbolic parameter:
set INTER:=abcdef g;

param entr
par am exi t

a ;
g

These parameters are subsequently used in defining the objective and constraints; the
complete model is developed in Section 15.2.
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Another use of symbolic parameters is to associate descriptive strings with set mem-
bers. Consider for example the set of “origins” in the transportation model of Figure
3-1la. When we introduced this set at the beginning of Chapter 3, we described each orig-
inating city by means of a 4-character string and a longer descriptive string. The short
strings became the members of A&MPL setORI G while the longer strings played no
further role. To make both available, we could declare

set ORI G
paramorig_nane {ORIG synbolic;
param supply {ORIG >= 0;

Then in the data we could specify

param ORI G ori g_name supply : =
GARY "@ary, Indiana" 1400
CLEV "Cl evel and, ©Chi o" 2600

PITT "Pittsburgh, Pennsylvania" 2900 ;

Since the long strings do not have the formABIPL names, they do need to be quoted.
They still play no role in the model or the resulting linear program, but they can be
retrieved for documentary purposes by diespl ay andpri nt f commands described

in Chapter 12.

Just as there are arithmetic and logical operators and functions, thanraretring
operators and functions for working with string values. These features are mostly used in
AMPL command scripts rather than in models, so we defer their description to Section
13.7.

Exercises

7-1. Show how the multicommodity transportation model of Figure 4-1 could be modified so that
it applies the following restrictions to the data. Use either a restriction phraseinar par am
declaration, or @heck statement, whichever is appropriate.
— No city is a member of botBRI GandDEST.
— The number of cities iIBEST must be greater than the numbeORl G
— Demand does not exceed 1000 at any one cDEST.
— Total supply for each product at all origins must equal total demand for that product at all des-
tinations.
— Total supply for all products at all origins must equal total demand for all products at all desti-
nations.
— Total supply of all products at an origin must not exceed total capacity for all shipments from
that origin.

— Total demand for all products at a destination must not exceed total capacity for all shipments
to that destination.

7-2. Show how the multiperiod production model of Figure 4-4 could be modified so that it
applies the following restrictions to the data.
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— The number of weeks is a positive integer greater than 1.

— The initial inventory of a product does not exceed the total market demand for that product
over all weeks.

— The inventory cost for a product is never more than 10% of the expected revenue for that prod-
uct in any one week.

— The number of hours in a week is between 24 and 40, and does not change by more than 8
hours from one week to the next.

— For each product, the expected revenue never decreases from one week to the next.

7-3. The solutions to the following exercises involve the use of fatt hen-el se operator to
formulate a constraint.

(a) In the example of the constraBel ance in Section 7.3, we used an expression beginning
if t = first(WEEKS) then ...

Find an equivalent expression that uses the functia t ) .

(b) Combine thédi et _M n andDi et _Max constraints of Figure 5-1's diet model into one con-
straint declaration.

(c) In the multicommodity transportation model of Figure 4-1, imagine that there is more demand
at the destinations than we can meet from the supply produced at the origins. To make up the dif-
ference, a limited number of additional tons can be purchased (rather than manufactured) for ship-
ment at certain origins.

To model this situation, suppose that we declare a subset of origins,
set BUY_ ORIG within ORI G

where the additional tons can be bought. The relevant data values and decision variables could be
indexed over this subset:

param buy_supply {BUY_ORI G PROD} >= 0; # available for purchase
param buy_cost {BUY_ORI G PROD} > 0; # purchase cost per ton

var Buy {i in BUY_ ORIG p in PROD} >= 0, <= buy_supply[i,p];
# amount to buy

Revise the objective function to include the purchase costs. ReviSapipéy constraints to say

that, for each origin and each product, total tons shipped out must equal tons of supply from pro-
duction plus (if applicable) tons purchased.

(d) Formulate the same model as in (c), but Bitly_ORI G being the set of pair§i , p) such

that producp can be bought at origin.

7-4. This exercise is concerned with the following sets and parameters from Figure 4-1:

set ORIG # origins
set DEST; # destinations
set PROD; # products

param supply {ORI G PROD} >= 0;
par am demand { DEST, PROD} >= O;

(a) Write par amdeclarations, using the operator, to compute parameters having the following
definitions:

— prod_suppl y[ p] is the total supply of produgtat all origins.
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— dest _demand][j ] is the total demand for all products at destination

—true_limt[i,j,p] isthe largest quantity of produptthat can be shipped fromto j
— that is, the largest value that does not ex¢eéad t [ i, ], or the supply op ati , or the
demand foip atj .

— max_suppl y[ p] is the largest supply of produetavailable at any origin.

—max_di ff[ p] is the largest difference, over all combinations of origins and destinations,
between the supply and demand for proguct

(b) Writeset declarations, using the operator, to compute these sets:
— Productp whose demand is at least 500 at some destination
— Productp whose demand is at least 250 at all destinajions
— Productp whose demand is equal to 500 at some destinption
7-5. AMPL parameters can be defined to contain many kinds of series, especially by using recur-

sive definitions. For example, we can mag ] equal the sum of the firgtintegers, foj from
1 to some given limiN, by writing

param N;
params {j in 1..N = sum{jj in1..j} jj;
or, using a formula for the sum,
params {j in 1..N} =j * (j+1) / 2;
or, using a recursive definition,
params {j in 1..N} =if j =1 then 1 else s[j-1] + j;

This exercise asks you to play with some other possibilities.
(a) Definef act[ n] to ben factorial, the product of the first integers. Give both a recursive
and a nonrecursive definition as above.
(b) The Fibonacci numbers are defined mathematicalljyby f, = 1 andf, = f,_; + f,_5.
Using a recursive declaration, defiheb[ n] in AMPL to equal then-th Fibonacci number.
Use anotheAMPL declaration to verify that the-th Fibonacci number equals the closest integer
to (12+12\/§)n/\/§.
(c) Here’s another recursive definition, called Ackermann’s function, for positive integyeds:
A(i,0)=i+1
A(0,j + 1) = A(1,))
AGi+1,j+1) = AAG, ] +1),))
Using a recursive declaration, defiaek[i,]j] in AMPL so that it will equalA(i, j). Use
di spl ay to printack[ 0, 0], ack[ 1, 1], ack[ 2, 2] and so forth. What difficulty do you
encounter?

(d) What are the valuesdd[ i ] defined by the following odd declaration?
paramodd {i in 1..N} =

if i =1then 3 else
min {j in odd[i-1]+2 .. odd[i-1]*2 by 2:
not exists {k in1 .. i-1} j nmod odd[k] = 0} j;

Once you've figured it out, create a simpler and more efficient declaration that gives a set rather
than an array of these numbers.
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(e) A “tree” consists of a collection of nodes, one of which we designate as the “root”. Each
node except the root has a unique predecessor node in the tree, such that if you work backwards
from a node to its predecessor, then to its predecessor's predecessor, and so forth, you always
eventually reach the root. A tree can be drawn like this, with the root at the left and an arrow from
each node to its successors:

We can store the structure of a tre@iPL sets and parameters as follows:

set NODES;

param Root symnbolic in NODES;

parampred {i in NODES diff {Root}} synmbolic in NODES diff {i};
Every node , exceptRoot , has a predecessored[i].
The depth of a node is the number of predecessors that you encounter on tracing back to the root;
the depth of the root is 0. Give amPL definition fordept h[i] that correctly computes the
depth of each node. To check your answer, apply your definitionABIPL data for the tree
depicted above; after reading in the data,disepl ay to view the parametetept h.

An error in the data could give a tree plus a disconnected cycle, like this:

—

If you enter such data, what will happen when you try to disiégpt h?
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Linear Programs: Variables,
Objectives and Constraints

The best-known kind of optimization model, which has served for all of our examples
so far, is the linear program. The variables of a linear program take values from some
continuous range; the objective and constraints must use only linear functions of the vari-
ables. Previous chapters have described these requirements informally or implicitly; here
we will be more specific.

Linear programs are particularly important because they accurately represent many
practical applications of optimization. The simplicity of linear functions makes linear
models easy to formulate, interpret, and analyze. They are also easy to solve; if you can
express your problem as alinear program, even in thousands of constraints and variables,
then you can be confident of finding an optimal solution accurately and quickly.

This chapter describes how variables are declared, defines the expressions that AMPL
recognizes as being linear in the variables, and gives the rules for declaring linear objec-
tives and constraints. Much of the material on variables, objectives and constraints is
basic to other AMPL models aswell, and will be used in later chapters.

Because AMPL is fundamentally an algebraic modeling language, this chapter concen-
trates on features for expressing linear programs in terms of algebraic objectives and con-
straints. For linear programs that have certain special structures, such as networks, AMPL
offers alternative notations that may make models easier to write, read and solve. Such
special structures are among the topics of Chapters 15 through 17.

8.1 Variables

The variables of a linear program have much in common with its numerical parame-
ters. Both are symbols that stand for numbers, and that may be used in arithmetic expres-
sions. Parameter values are supplied by the modeler or computed from other values,

129
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while the values of variables are determined by an optimizing algorithm (as implemented
in one of the packages that we refer to as solvers).

Syntacticaly, variable declarations are the same as the parameter declarations defined
in Chapter 7, except that they begin with the keyword var rather than param The
meaning of qualifying phrases within the declaration may be different, however, when
these phrases are applied to variables rather than to parameters.

Phrases beginning with >= or <= are by far the most common in declarations of vari-
ablesfor linear programs. They have appeared in al of our examples, beginning with the
production model of Figure 1-4:

var Make {p in PROD} >= 0, <= market[p];

This declaration creates an indexed collection of variables Make[ p] , one for each mem-
ber p of the set PROD; the rules in this respect are exactly the same as for parameters.
The effect of the two qualifying phrases is to impose a restriction, or constraint, on the
permissible values of the variables. Specifically, >= 0 implies that all of the variables
Make[ p] must be assigned nonnegative values by the optimizing algorithm, while the
phrase <= mar ket [ p] says that, for each product p, the value given to Make[ p] may
not exceed the value of the parameter mar ket [ p] .

In general, either >= or <= may be followed by any arithmetic expression in previ-
oudly defined sets and parameters and currently defined dummy indices. Most linear pro-
grams are formulated in such a way that every variable must be nonnegative; an AMPL
variable declaration can specify nonnegativity either directly by >= 0, or indirectly asin
the diet model of Figure 5-1:

param f _min {FOOD} >= O;
paramf_max {j in FOOD} >=f_nmin[j];

var Buy {j in FOOD} >=f_min[j], <= f_max[j];

The values following >= and <= are lower and upper bounds on the variables. Because
these bounds represent a kind of constraint, they could just as well be imposed by the
constraint declarations described later in this chapter. By placing boundsin thevar dec-
laration instead, you may be able to make the model shorter or clearer, although you will
not make the optimal solution any different or easier to find. Some solvers do treat
bounds specially in order to speed up their algorithms, but with AMPL al bounds are
identified automatically, no matter how they are expressed in your model.

Variable declarations may not use the comparison operators <, > or <> in qualifying
phrases. For linear programming it makes no sense to constrain a variable to be, say, < 3,
sinceit could always be chosen as 2.99999... or as close to 3 asyou like.

An = phrase in a variable declaration gives rise to a definition, as in a parameter dec-
laration. Because a variable is being declared, however, the expression to the right of the
= operator may contain previously declared variables as well as sets and parameters. For
example, instead of writing the complicated objective from the multi-period production
model of Figure 6-3 (st eel T3. nod) as
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mexi mze Total Profit:
sum{p in PROD, t in 1..T}
(sum{a in AREA[p]} revenue[p,a,t]*Sell[p,a,t] -
prodcost [ p] *Make[ p,t] - invcost[p]*Inv[p,t]);

you could instead define variables to represent the total revenues, production costs, and
inventory costs:

var Total Revenue =
sum{p in PROD, t in 1..T}
sum{a in AREA[ p]} revenue[p,a,t] * Sell[p,a,t];
var Total Prod_Cost =
sum{p in PROD, t in 1..T} prodcost[p] * Make[p,t];
var Total _I nv_Cost =
sum{p in PROD, t in 1..T} invcost[p] * Inv[p,t];

The objective would then be the sum of these three defined variables:

maxi m ze Total Profit:
Total _Revenue - Total _Prod_Cost - Total _I nv_Cost;

The structure of the objective is clearer this way. Also the defined variables are conve-
niently available to a di spl ay statement to show how the three main components of
profit compare:
anpl : display Total _Revenue, Total Prod_Cost, Total _Inv_Cost;
Total _Revenue = 801385

Total _Prod_Cost = 285643
Total _I nv_Cost = 1221

Declarations of defined variables like these do not give rise to additional constraints in
the resulting problem instance. Rather, the linear expression to the right of the = is sub-
stituted for every occurrence of the defined variable in the objective and constraints.
Defined variables are even more useful for nonlinear programming, where the substitu-
tion may be only implicit, so we will return to this topic in Chapter 18.

If the expression to the right of the = operator contains no variables, then you are
merely defining variables to be fixed to values given by the data. In that case you should
use a par amdeclaration instead. On the other hand, if you only want to fix some vari-
ables temporarily while developing or analyzing a model, then you should leave the dec-
larations unchanged and instead fix them with the f i x command described in Section
11.4.

A : = or def aul t phrase in a variable declaration gives initial values to the indi-
cated variables. Variables not assigned an initial value by : = can aso be assigned initial
values from a data file. Initial values of variables are normally changed — ideally to
optimal values — when a solver is invoked. Thus the main purpose of initial values of
variables is to give the solver a good starting solution. Solvers for linear programming
can seldom make good use of a starting solution, however, so we defer further discussion
of this topic to Chapter 18 on nonlinear programming.

Finally, variables may be declared asi nt eger so that they must take whole number
valuesin any optimal solution, or as bi nar y so that they may only take the values 0 and
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1. Models that contain any such variables are integer programs, which are the topic of
Chapter 20.

8.2 Linear expressions

An arithmetic expression is linear in a given variable if, for every unit increase or
decrease in the variable, the value of the expression increases or decreases by some fixed
amount. An expression that is linear in all its variables is called a linear expression.
(Strictly speaking, these are affine expressions, and a linear expression is an affine
expression with constant term zero. For simplicity, we will ignore this distinction.)

AMPL recoghizes as alinear expression any sum of terms of the form

constant-expr
variable-ref
(constant-expr) * variable-ref

provided that each constant-expr is an arithmetic expression that contains no variables,
while var-ref is a reference (possibly subscripted) to a variable. The parentheses around
the constant-expr may be omitted if the result is the same according to the rules of opera-
tor precedence (Table A-1). The following examples, from the constraints in the multi-
period production model of Figure 6-3, are all linear expressions under this definition:
avail [t]
Make[ p,t] + Inv[p,t-1]

sum{p in PROD} (1/rate[p]) * Make[p,t]
sum{a in AREA[p]} Sell[p,a,t] + Inv[p,t]

The model’ s objective,

sum{p in PROD, t in 1..T}
(sum{a in AREA[ p]} revenue[p,a,t] * Sell[p,a,t] -
prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t])

is aso linear because subtraction of a term is the addition of its negative, and a sum of
sumsisitself asum.

Various kinds of expressions are equivalent to a sum of terms of the forms above, and
are also recognized as linear by AMPL. Division by an arithmetic expression is equiva-
lent to multiplication by itsinverse, so

(1/rate[p]) * Make[p,t]
may be written in alinear program as
Make[ p,t] / rate[p]

The order of multiplications is irrelevant, so the variable-ref need not come at the end of
aterm; for instance,

revenue[p,a,t] * Sell[p,a,t]
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is equivalent to
Sell[p,a,t] * revenue[p,a,t]

As an example combining these principles, imaginethat r evenue[ p, a, t] isindollars
per metric ton, while Sel | remainsintons. If we define conversion factors

param nt _t
param t _nt

0.90718474; # nmetric tons per ton
1/ m_t; # tons per netric ton

then both

sum{a in AREA[p]} nt_t * revenue[p,a,t] * Sell[p,a,t]
and

sum{a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] / t_nt

are linear expressions for total revenue.
To continue our example, if costs are also in dollars per metric ton, the objective
could be written as

m_t * sum{p in PROD, t in 1..T}
(sum{a in AREA[ p]} revenue[p,a,t] * Sell[p,a,t] -
prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t])

or as

sum{p in PROD, t in 1..T}
(sum{a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -
prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t]) / t_nt

Multiplication and division distribute over any summation to yield an equivalent linear
sum of terms. Notice that in the first form, nt _t multiplies the entire sum{p i n
PROD, t in1..T},whileinthesecondt _mt divides only the summand that follows
sum{pinPROD, t in1l..T},becausethe/ operator has higher precedence than the
sumoperator. In these examples the effect is the same, however.

Finally, ani f -t hen-el se operator produces a linear result if the expressions fol-
lowing t hen and el se are both linear and no variables appear in the logical expression
betweeni f and el se. Thefollowing example appeared in a constraint in Section 7.3:

Make[j,t] +
(if t =first(VWEEKS) then invO[j] else Inv[j,prev(t)])

The variables in a linear expression may not appear as the operands to any other opera-
tors, or in the arguments to any functions. This rule applies to iterated operators like
max, m n, abs, foral |, and exi sts, aswell as” and standard numerical functions
likesqgrt,l og,and cos.

To summarize, alinear expression may be any sum of termsin the forms
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constant-expr

var -ref

(constant-expr) * (linear-expr)

(linear-expr) * ( constant-expr)

(linear-expr) / ( constant-expr)

i f logical-expr then linear-expr el se linear-expr

where constant-expr is any arithmetic expression that contains no references to variables,
and linear-expr is any other (simpler) linear expression. Parentheses may be omitted if
the result is the same by the rules of operator precedence in Table A-1. AMPL automati-
cally performs the transformations that convert any such expression to a simple sum of
linear terms.

8.3 Objectives

The declaration of an objective function consists of one of the keywords mi ni mi ze
or maxi ni ze, a name, a colon, and a linear expression in previously defined sets,
parameters and variables. We have seen examples such as

mnimze Total _Cost: sum{j in FOOD} cost[j] * Buy[j];
and

mexi mze Total Profit:
sum{p in PROD, t in 1..T}
(sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -
prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t]);

The name of the objective plays no further role in the model, with the exception of certain
“‘columnwise’’ declarations to be introduced in Chapters 15 and 16. Within AMPL com-
mands, the objective’s name refers to its value. Thus for example after solving afeasible
instance of the Figure 2-1 diet model we could issue the command

anpl: display {j in FOOD} 100 * cost[j] * Buy[j] / Total _Cost;
100*cost[j]*Buy[j]/ Total _Cost [*] :=
BEEF 14. 4845
CHK  4.38762
FISH 3.8794
HAM 24,4792
MCH 16. 0089
MIL 16. 8559
SPG 15. 6862
TUR  4.21822

to show the percentage of the total cost spent on each food.

Although a particular linear program must have one objective function, a model may
contain more than one objective declaration. Moreover, any m ni m ze or maxi i ze
declaration may define an indexed collection of objective functions, by including an
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indexing expression after the objective name. In these cases, you may issue an
obj ect i ve command, before typing sol ve, to indicate which objective is to be opti-
mized.

As an example, recall that when trying to solve the model of Figure 2-1 with the data
of Figure 2-2, we found that no solution could satisfy al of the constraints; we subse-
quently increased the sodium (NA) limit to 50000 to make a feasible solution possible. It
is reasonable to ask: How much of an increase in the sodium limit is really necessary to
permit a feasible solution? For this purpose we can introduce a new objective equal to
the total sodium in the diet:

mnimze Total _NA: sum{j in FOOD} anmt["NA",j] * Buy[j];

(We create this objective only for sodium, because we have no reason to minimize most
of the other nutrients.) We can solve the linear program for total cost as before, since
AMPL chooses the model’ sfirst objective by default:

anpl : nodel diet. nod;

anpl : data diet?2a. dat;

anpl : display n_max["NA"];

n_max['NA'] = 50000

anpl: mninmize Total _NA: sum{j in FOOD} ant["NA",j] * Buy[j];
anpl : sol ve;

M NOS 5.5: optimal solution found.

13 iterations, objective 118.0594032

hj ective = Total _Cost

The solver tells us the minimum cost, and we can also use di spl ay to look at the total
sodium, even though it’s not currently being minimized:

anpl : display Total _NA;
Total _NA = 50000

Next we can use the obj ect i ve command to switch the objective to minimization of
total sodium. The sol ve command then re-optimizes with this alternative objective, and
wedisplay Tot al _Cost to determine the resulting cost:

anpl : objective Total _NA;

anpl : sol ve;
M NCS 5.5: optimal solution found.
1l iterations, objective 48186

anpl : di splay Total _Cost;
Total _Cost = 123. 627

We see that sodium can be brought down by about 1800, though the cost is forced up by
about $5.50 as a result. (Healthier diets are in general more expensive, because they
force the solution away from the one that minimizes costs.)

As another example, here’ s how we could experiment with different optimal solutions
for the office assignment problem of Figure 3-2. First we solve the original problem:
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anpl : nodel transp.nod; data assign.dat; solve;
CPLEX 8.0.0: optinmal solution; objective 28
24 dual sinplex iterations (0 in phase I|)

anpl : option display_1col 1000, omt_zero_rows 1,
anpl : option display_eps .000001;

anpl : di splay Total _Cost,
anpl ? {i in ORIG | in DEST} cost[i,j] * Trans[i,]];
Total _Cost = 28

cost[i,j]*Trans[i,]] :=

Coul lard C118
Daski n D241
Hazen C246
Hopp D237

I ravani C138
Li netsky C250
Mehrotra D239
Nel son C140
Smilowitz M233
Tanmhane C251
Wite V239
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To keep the objective value at this optimal level while we experiment, we add a con-
straint that fixes the expression for the objective equal to the current value, 28:

anpl : subject to Stay_Optinmal:
anpl ? sum{i in ORIG | in DEST}
anpl ? cost[i,j] * Trans[i,j] = 28;

Next, recall that cost [i,j] istheranking that personi has given to office j , while
Trans[i,]j] issettolifit'soptimal to put personi inofficej , or O otherwise. Thus

sum{j in DEST} cost[i,j] * Trans[i,]]

aways equals the ranking of personi for the office to which i isassigned. We use this
expression to declare a new objective function:

anpl: minimze Pref_of {i in ORIG:
anpl ? sum{j in DEST} cost[i,j] * Trans[i,j];

This statement creates, for each person i , an objective Pref _of [ 1] that minimizes the
ranking of i for theroom that i isassigned. Then we can select any one person and opti-
mize his or her ranking in the assignment:

anpl : objective Pref_of ["Coul l ard"];

anpl : sol ve;

CPLEX 8.0.0: optinmal solution; objective 3
3 sinplex iterations (0 in phase 1)

Looking at the new assignment, we see that the origina objective is unchanged, and that
the selected individual’s situation is in fact improved, although of course at the expense
of others:
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anpl : di splay Total _Cost,
anpl ? {i in ORIG | in DEST} cost[i,j] * Trans[i,j];
Total _Cost = 28

cost[i,j]*Trans[i,j] :=

Coul l ard D241
Daski n D237
Hazen C246
Hopp C251

I ravani C138
Li netsky C250
Mehrotra D239
Nel son C140
Smilowitz M233
Tanmhane C118
Wite V239
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We were able to make this change because there are several optimal solutionsto the origi-
nal total-ranking objective. A solver arbitrarily returns one of these, but by use of a sec-
ond objective we can force it toward others.

8.4 Constraints

The simplest kind of constraint declaration begins with the keywords subj ect t o, a
name, and a colon. Even the subj ect t o isoptiona; AMPL assumes that any declara-
tion not beginning with a keyword is a constraint. Following the colon is an algebraic
description of the constraint, in terms of previously defined sets, parameters and vari-
ables. Thus in the production model introduced in Figure 1-4, we have the following
constraint imposed by limited processing time:

subj ect to Time:
sum{p in PROD} (1/rate[p]) * Make[p] <= avail;

The name of a constraint, like the name of an objective, is not used anywhere else in an
algebraic model, though it figures in aternative ‘‘columnwise’’ formulations (Chapter
16) and is used in the AMPL command environment to specify the constraint’s dual value
and other associated quantities (Chapter 14).

Most of the constraints in large linear programming models are defined as indexed
collections, by giving an indexing expression after the constraint name. The constraint
Ti e, for example, is generalized in subsequent examples to say that the production time
may not exceed the time available in each processing stage s (Figure 1-6a):

subject to Tinme {s in STAGE}:
sum{p in PROD} (1l/rate[p,s]) * Make[p] <= avail[s];

orineachweek t (Figure4-4):
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subject to Time {t in 1..T}:
sum{p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

Another constraint from the latter example says that production, sales and inventories
must balance for each product p in each week t :

subject to Balance {p in PROD, t in 1..T}:
Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

A constraint declaration can specify any valid indexing expression, which defines a set
(as explained in Chapters 5 and 6); there is one constraint for each member of this set.
The constraint name can be subscripted, so that Ti me[ 1] or Bal ance[ p, t +1] refers
to aparticular constraint from an indexed collection.

The indexing expression in a constraint declaration should specify a dummy index
(likes, t and p in the preceding examples) for each dimension of the indexing set. Then
when the constraint corresponding to a particular indexing-set member is processed by
AMPL, the dummy indices take their values from that member. This use of dummy
indices is what permits a single constraint expression to represent many constraints; the
indexing expression is AMPL’s translation of a phrase such as ‘‘for al products p and
weekst=1to T’ that might be seen in an algebraic statement of the model.

By using more complex indexing expressions, you can specify more precisely the
constraints to be included in amodel. Consider, for example, the following variation on
the production time constraint:

subject to Time {t in 1..T: avail[t] > 0}:
sum{p in PROD} (1l/rate[p]) * Make[p,t] <= avail[t];

This says that if avai | [t] is specified as zero in the data for any week t , it is to be
interpreted as meaning ‘‘no constraint on time availableinweek t *’ rather than *‘limit of
zeroontimeavailableinweek t *’. In the simpler case where thereisjust one Ti e con-
straint not indexed over weeks, you can specify an analogous conditional definition as
follows:

subject to Time {if avail > 0}:
sum{p in PROD} (1/rate[p]) * Make[p] <= avail;

The pseudo-indexing expression {i f avai | > 0} causes one constraint, named Ti e,
to be generated if the condition avai | > 0 is true, and no constraint at al to be gener-
ated if the condition is false. (The same notation can be used to conditionally define
other model components.)
AMPL’s agebraic description of a constraint may consist of any two linear expres-

sions separated by an equality or inequality operator:

linear-expr <= linear-expr

linear-expr = linear-expr

linear-expr >=linear -expr

While it is customary in mathematical descriptions of linear programming to place all
terms containing variables to the left of the operator and all other termsto theright (asin
congtraint Ti me), AMPL imposes no such requirement (as seen in constraint Bal ance).
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Convenience and readability should determine what terms you place on each side of the
operator. AMPL takes care of canonicalizing constraints, such as by combining linear
terms involving the same variable and moving variables from one side of a constraint to
the other. The expand command described in Section 1.4 shows the canonical forms of
the constraints.

AMPL also alows double-inequality constraints such as the following from the diet
model of Figure 2-1:

subject to Diet {i in NUTR}:
n_mnfi] <= sum{j in FOOD} ant[i,j] * Buy[j] <= n_max[i];

This says that the middle expression, the amount of nutrient i supplied by all foods, must
be greater than or equal ton_m n[i] and also less than or equal to n_max[i]. The
permissible forms for a constraint of thiskind are

const-expr <= linear-expr <= const-expr
const-expr >= linear-expr >= const-expr

where each const-expr must contain no variables. The effect is to give upper and lower
bounds on the value of the linear-expr. If your model requires variables in the left-hand
or right-hand const-expr, you must define two different constraints in separate declara-
tions.

For most applications of linear programming, you need not worry about the form of
the constraints. If you simply write the constraints in the most convenient way, they will
be recognized as proper linear constraints according to the rulesin this chapter. There do
exist situations, however, in which your choice of formulation will determine whether
AMPL recognizes your model as linear. Imagine that we want to further constrain the
production model so that no product p may represent more than a certain fraction of total
production. We define a parameter max_f r ac to represent the limiting fraction; the
constraint then says that production of p divided by total production must be less than or
equal tomax_frac:

subject to Linmt {p in PROD}:
Make[p] / sum{qg in PROD} Make[q] <= max_frac;

Thisis not a linear constraint to AMPL, because its |eft-hand expression contains a divi-
sion by asum of variables. But if werewriteit as

subject to Linmt {p in PROD}:
Make[ p] <= max_frac * sum{q in PROD} Mke[q];

then AMPL does recognizeit aslinear.

AMPL simplifies constraints as it prepares the model and data for handing to a solver.
For example, it may eliminate variables fixed at a value, combine single-variable con-
straints with the simple bounds on the variables, or drop constraints that are implied by
other congtraints. You can normally ignore this presolve phase, but there are ways to
observe its effects and modify its actions, as explained in Section 14.1.
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Exercises

8-1. Inthediet model of Figure 5-1, add a: = phrase to the var declaration (as explained in Sec-
tion 8.1) to initialize each variable to a value midway between its lower and upper bounds.

Read this model into AMPL along with the data from Figure 5-2. Using di spl ay commands,
determine which constraints (if any) the initial solution fails to satisfy, and what total cost this solu-
tion gives. Isthetotal cost more or less than the optimal total cost?

8-2. Thisexercise asks you to reformulate various kinds of constraints to make them linear.
(a) The following constraint says that the inventory | nv[ p, t] for product p in any periodt must
not exceed the smallest one-period production Make[ p, t] of product p:

subject to Inv_Limt {pin PROD, t in 1..T}:
Inv[p,t] <= min {tt in 1..T} Mke[p, tt];

This constraint is not recognized as linear by AMPL, because it applies the mi n operator to vari-
ables. Formulate alinear constraint that has the same effect.

(b) The following constraint says that the change in total inventories from one period to the next
may not exceed a certain parameter max_change:

subj ect to Max_Change {t in 1..T}:
abs(sum {p in PROD} Inv[p,t-1] - sum{p in PRCD} Inv[p,t])
<= max_change;

This constraint is not linear because it applies the abs function to an expression involving vari-
ables. Formulate alinear constraint that has the same effect.

(c) The following constraint says that the ratio of total production to total inventory in a period may
not exceed max_i nv_rati o:

subject to Max_Inv_Ratio {t in 1..T}:
(sum{p in PROD} Inv[p,t]) / (sum{p in PROD} Make[p,t])
<= max_inv_ratio;

This constraint is not linear because it divides one sum of variables by another. Formulate a linear
congtraint that has the same effect.
(d) What can you say about formulation of an alternative linear constraint for the following cases?
—In (@), m nisreplaced by max.
—In(b), <= nax_change isreplaced by >= m n_change.
—In (c), the parameter max_i nv_r at i o isreplaced by anew variable, Rati o[ t] .
8-3. This exercise deals with some more possibilities for using more than one objective function
in adiet model. Here we consider the model of Figure 5-1, together with the data from Figure 5-2.
Suppose that the costs are indexed over stores as well as foods:

set STORE:
param cost {STORE, FOOD} > 0;

A separate objective function may then be defined for each store:

m nimze Total _Cost {s in STORE}:
sum{j in FOOD} cost[s,j] * Buy[j];

Consider the following data for three stores:
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set STORE := "A&P" JEWEL VONS ;

paramcost: BEEF CHK FISH HAM MCH  MIL SPG TUR : =
" A&P" 3.19 2.59 2.29 2.89 1.89 1.99 1.99 2.49
JEWVEL 3.09 2.79 2.29 2,59 1.59 1.99 2.09 2.30
VONS 2.59 2.99 2.49 2.69 1.99 2.29 2.00 2.69 ;

Using the obj ect i ve command, find the lowest-cost diet for each store. Which store offers the
lowest total cost?

Consider now an additional objective that represents total packages purchased, regardless of cost:

m ni m ze Total _Nunber:
sum {j in FOOD} Buy[j];

What is the minimum value of this objective? What are the costs at the three stores when this
objective is minimized? Explain why you would expect these costs to be higher than the costs
computed in (a).

8-4. This exercise relates to the assignment example of Section 8.3.

(a) What is the best-ranking office that you can assign to each individual, given that the total of the
rankings must stay at the optimal value of 28? How many different optimal assignments do there
seem to be, and which individuals get different officesin different assignments?

(b) Modify the assignment example so that it will find the best-ranking office that you can assign to
each individual, given that the total of the rankings may increase from 28, but may not exceed 30.
(c) After making the modification suggested in (b), the person in charge of assigning offices has
tried again to minimize the objective Pr ef _of [ " Coul | ar d"] . Thistime, the reported solution
isasfollows:

ampl : di splay Total _Cost,
ampl ? {i in ORIG | in DEST} cost[i,j]*Trans[i,]j];
Total _Cost = 30

cost[i,j]*Trans[i,j] :=

Coul lard M239 1
Daski n D241 4
Hazen C246 1
Hopp C251 2.5
Hopp D237 0.5
I ravani C138 2
Li netsky C250 3
Mehrotra D239 2
Nel son C140 4
Smilowitz M233 1
Tamhane C118 5
Wi te C251 2.5
1.5

Wite D237

Coullard is now assigned her first choice, but what is the difficulty with the overall solution? Why
doesn’t it give a useful resolution to the assignment problem as we have stated it?

8-5. Return to the assignment version of the transportation model, in Figures 3-1a and 3-2.

(a) Add parameters wor st[i] for each i in ORI G and constraints saying that Trans|[ i, j ]
must equal 0 for every combination of i in ORI Gandj in DEST suchthat cost[i, ] isgreater
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than wor st [i]. (Seethe congtraint Ti me in Section 8.4 for a similar example.) In the assign-
ment interpretation of this model, what do the new constraints mean?

(b) Use the model from (&) to show that there is an optimal solution, with the objective equal to 28,
in which no one gets an office worse than their fifth choice.

(c) Use the model from (&) to show that at least one person must get an office worse than fourth
choice.

(d) Use the model from (a) to show that if you give Nelson his first choice, without any restrictions
on the other individuals choices, the objective cannot be made smaller than 31. Determine simi-
larly how small the objective can be made if each other individual is given first choice.
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Specifying Data

As we emphasize throughout this book, there is a distinction between an AMPL model
for an optimization problem, and the data values that define a particular instance of the
problem. Chapters 5 through 8 focused on the declarations of sets, parameters, variables,
objectives and constraints that are necessary to describe models. In this chapter and the
next, we take a closer look at the statements that specify the data.

Examples of AMPL data statements appear in almost every chapter. These statements
offer several formats for lists and tables of set and parameter values. Some formats are
most naturally created and maintained in a text editing or word processing environment,
while others are easy to generate from programs like database systems and spreadshests.
The di spl ay command (Chapter 12) also produces output in these formats. Wherever
possible, similar syntax and concepts are used for both sets and parameters.

This chapter first explains how AMPL’s dat a command is used, in conjunction with
data statements, to read data values from files such as those whose names end in . dat
throughout our examples. Options to the dat a command aso allow or force selected
sets and parameters to be read again.

Subsequent sections describe data statements, first for lists and then for tables of set
and parameter data, followed by brief sections on initial values for variables, values for
indexed collections of sets, and default values. A summary of data statement formats
appearsin Section A.12.

A final section describes ther ead command, which reads unformatted lists of values
into sets and parameters. Chapter 10 is devoted to AMPL’s features for data stored in
relational database tables.

9.1 Formatted data: the dat a command

Declarations like par amand var , and commands like sol ve and di spl ay, are
executed in model mode, the standard mode for most modeling activity. But model mode
isinconvenient for reading long lists of set and parameter values. Instead AMPL reads its

143



144 SPECIFYING DATA CHAPTER 9

data statements in a data mode that is initiated by the dat a command. In its most com-
mon use, this command consists of the keyword dat a followed by the name of a file.
For example,

anpl : data diet.dat;

reads data from a file named di et . dat . Filenames containing spaces, semicolons, or
nonprinting characters must be enclosed in quotes.

While reading in data mode, AMPL treats white space, that is, any sequence of space,
tab, and ‘‘newline’’ characters, as asingle space. Commas separating strings or numbers
are also ignored. Judicious use of these separators can help to arrange data into easy-to-
read lists and tables; our examples use a combination of spaces and newlines. If data
statements are produced as output from other data management software and sent directly
to AMPL, however, then you may ignore visual appearance and use whatever format is
convenient.

Data files often contain numerous character strings, representing set members or the
values of symbolic parameters. Thus in data mode AMPL does not, in general, reguire
strings to be enclosed in quotes. Strings that include any character other than letters, dig-
its, underscores, period, + and - must be quoted, however, as in the case of A&P. You
may use a pair of either single quotes (' A&P’ ) or double quotes (" A&P"), unless the
string contains a quote, in which case the other kind of quote must surround it
("DOM NI CK' S") or the surrounding quote must be doubled within it
(DOMNCK ' S).

A string that looks like a number (for example" +1" or " 3e4") must also be quoted,
to distinguish it from a set member or parameter value that is actually a number. Num-
bers that have the same internal representation are considered to be the same, so that for
example 2, 2. 00, 2. e0 and 0. 02E+2 all denote the same set member.

When AMPL finishes reading a file in data mode, it normally reverts to whatever
mode it was in before the dat a command was executed. Hence adatafile can itself con-
tain dat a commands that read data from other files. If the last data statement in a data
file lacks its terminating semicolon, however, then data mode persists regardless of the
previous mode.

A dat a command with no filename puts AMPL into data mode, so subsequent input
istaken as data statements:

anpl : nodel dietu. nod;
anpl : dat a;

anpl data: set M NREQ :
anpl data: set MAXREQ :
anpl data: display NUTR;

set NUTR := A Bl B2 C CAL NA;

anpl :

AMPL leaves data mode when it sees any statement (like di spl ay) that does not begin
with a keyword (like set or par am that begins a dat a statement. The nodel com-
mand, with or without filename, also causes a return to model mode.

A Bl B2 C CAL;
A NA CAL;
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Model components may be assigned values from any number of data files, by using
multiple dat a commands. Regardless of the number of files, AMPL checks that no com-
ponent is assigned a value more than once, and duplicate assignments are flagged as
errors. In some situations, however, it is convenient to be able to change the data by issu-
ing new dat a statements; for example, after solving for one scenario of a model, you
may want to modify some of the data by reading a new datafile that corresponds to a sec-
ond scenario. The data values in the new file would normally be treated as erroneous
duplicates, but you can tell AMPL to accept them by first giving a reset data or
updat e dat a command. These alternatives are described in Section 11.3, along with
the use of reset dat a to resample randomly-computed parameters, and of | et to
directly assign new set or parameter values.

9.2 Datain lists

For an unindexed (scalar) parameter, a data statement assigns one value:

param avail := 40;

Most of atypical model’s parameters are indexed over sets, however, and their values are
specified in a variety of lists and tables that are introduced in this section and the next,
respectively.

We start with sets of simple one-dimensional objects, and the one-dimensional collec-
tions of parameters indexed over them. We then turn to two-dimensional sets and param-
eters, for which we have the additional option of organizing the data into ‘‘slices”’. The
options for two dimensions are then shown to generalize readily to higher dimensions, for
which we present some three-dimensional examples. Finally, we show how data state-
ments for a set and the parameters indexed over it can be combined to provide a more
concise and convenient representation.

Lists of one-dimensional sets and parameters

For a parameter indexed over a one-dimensional set like

set PROD;
paramrate {PROD} > O;

the specification of the set can be simply alisting of its members:
set PROD : = bands coils plate ;

and the parameter’s specification may be virtually the same except for the addition of a
value after each set member:

paramrate : = bands 200 coils 140 plate 160 ;
The parameter specification could equally well be written
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paramrate : =

bands 200
coils 140
plate 160

since extra spaces and line breaks are ignored.

If a one-dimensional set has been declared with the attribute ordered or
ci rcul ar (Section 5.6), then the ordering of its members is taken from the data state-
ment that definesit. For example, we specified

set WEEKS := 27sep 04oct 1loct 18oct
as the membership of the ordered set WEEKS in Figure 5-4.
Members of a set must all be different; AMPL will warn of duplicates:

duplicate nmenber coils for set PROD
context: set PROD := bands coils plate coils >>>; <<<

Also a parameter may not be given more than one value for each member of the set over
whichitisindexed. A violation of thisrule provokes asimilar message:

rate[’ bands’] already defined
context: paramrate := bands 200 bands 160 >>> ; <<<

The context bracketed by >>> and <<< isn't the exact point of the error, but the message
makes the situation clear.

A set may be specified as empty by giving an empty list of members; simply put the
semicolon right after the : = operator. A parameter indexed over an empty set has no data
associated with it.

Lists of two-dimensional sets and parameters

The extension of data lists to the two-dimensional case is largely straightforward, but
with each set member denoted by a pair of objects. As an example, consider the follow-
ing sets from Figure 6-2a

set ORI G # origins
set DEST; # destinations

set LINKS wi thin {ORl G DEST}; # transportation |inks

The members of ORI Gand DEST can be given asfor any one-dimensional sets:

set ORIG:= GARY CLEV PITT
set DEST := FRA DET LAN WN STL FRE LAF

Then the membership of LI NKS may be specified as a list of tuples such as you would
find in amodel’ sindexing expressions,

set LINKS :=
(GARY, DET) (GARY, LAN) (GARY, STL) (GARY, LAF) (CLEV, FRA)
(CLEV, DET) (CLEV,LAN) (CLEV,WN) (CLEV, STL) (CLEV, LAF)
(PITT,FRA) (PITT,WN) (PITT,STL) (PITT, FRE)
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or asalist of pairs, without the parentheses and commas:

set LINKS :=
GARY DET GARY LAN GARY STL GARY LAF
CLEV FRA CLEV DET CLEV LAN CLEV WN
CLEV STL CLEV LAF PITT FRA PITT WN
PITT STL PITT FRE ;

The order of members within each pair is significant — the first must be from ORI G, and
the second from DEST — but the pairs themselves may appear in any order.

An alternative, more concise way to describe this set of pairsisto list all second com-
ponents that go with each first component:

set LINKS : =
(GARY, *) DET LAN STL LAF
(CLEV, *) FRA DET LAN WN STL LAF
(PITT,*) FRA WN STL FRE ;

Itisalso easy tolist al first components that go with each second component:

set LINKS : =
(*, FRA) CLEV PITT (*, DET) GARY CLEV (*, LAN) GARY CLEV
(*, WN) CLEV PITT (*, LAF) GARY CLEV (*,FRE) PITT
(*, STL) GARY CLEV PITT ;

An expression such as ( GARY, *) or (*, FRA) , resembling a pair but with a component
replaced by a*, is a data template. Each template is followed by alist, whose entries are
substituted for the * to generate pairs; these pairs together make up a dice through the
dimension of the set where the * appears. A tuple without any *'s, like ( GARY, DET) ,
isin effect atemplate that specifies only itself, so it is not followed by any values. At the
other extreme, in the table that consists of pairs alone,

set LINKS :=
GARY DET GARY LAN GARY STL GARY LAF
CLEV FRA CLEV DET CLEV LAN CLEV WN
CLEV STL CLEV LAF PITT FRA PITT WN
PITT STL PITT FRE ;

adefault template (*, *) appliesto all entries.

For a parameter indexed over a two-dimensional set, the AMPL list formats are again
derived from those for sets by placing parameter values after the set members. Thusif we
have the parameter cost indexed over the set L1 NKS:

param cost {LINKS} >= 0;

thenthe set data statement for LI NKS is extended to become the following par amdata
statement for cost :

param cost : =
GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WN 9
CLEV STL 26 CLEV LAF 17 PITT FRA 24 PITT WN 13
PITT STL 28 PITT FRE 99 ;
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Lists of dlices through a set extend similarly, by placing a parameter value after each
implied set member. Thus, corresponding to our concise data statement for L1 NKS:

set LINKS :=
(GARY, *) DET LAN STL LAF
(CLEV, *) FRA DET LAN WN STL LAF
(PITT,*) FRA WN STL FRE ;

thereis the following statement for the values of cost :

param cost : =
[ GARY, *] DET 14 LAN 11 STL 16 LAF 8
[CLEV,*] FRA 27 DET 9 LAN 12 WN 9 STL 26 LAF 17
[PITT,*] FRA 24 WN 13 STL 28 FRE 99 ;

The templates are given in brackets to distinguish them from the set templates in paren-
theses, but they work in the same way. Thus a template such as [ GARY, *] indicates
that the ensuing entries will be for values of cost that have afirst index of GARY, and an
entry such as DET 14 givescost [ " GARY", "DET"] avalue of 14.

All of the above applies just as well to the use of templates that dice on the first
dimension, so that for instance you could also specify parameter cost by:

paramcost =

[*, FRA] CLEV 27 PITT 24

[*, DET] GARY 14 CLEV 9

[*,LAN] GARY 11 CLEV 12

[*, WN] CLEV 9 PITT 13

[*,STL] GARY 16 CLEV 26 PITT 28
[*, FRE] PITT 99

[*, LAF] GARY 8 CLEV 17

Y ou can even think of the list-of-pairs example,

param cost : =
GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8

as also being a case of thisform, corresponding to the default template [ *, *] .

Lists of higher-dimensional sets and parameters

The concepts underlying data lists for two-dimensional sets and parameters extend
straightforwardly to higher-dimensional cases. The only difference of any note is that
nontrivial slices may be made through more than one dimension. Hence we confine the
presentation here to some illustrative examples in three dimensions, followed by a sketch
of the genera rulesfor the AMPL datalist format that are given in Section A.12.

We take our example from Section 6.3, where we suggest a version of the multicom-
maodity transportation model that defines a set of triples and costs indexed over them:

set ROUTES within {ORl G DEST, PROD};
param cost {ROUTES} >= O0;
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Suppose that ORI G and DEST are as above, that PROD only has members bands and
coi | s, and that ROUTES has as members certain triples from { ORI G, DEST, PROD} .
Then the membership of ROUTES can be given most simply by alist of triples, either

set ROUTES : =

( GARY, LAN, coi | s)
(CLEV, FRA, bands)
(CLEV, DET, coi | s)
(CLEV, WN, coi | s)
(CLEV, LAF, bands)
(PI'TT, STL, bands)

(GARY, STL, coi | s)
(CLEV, FRA, coi | s)
(CLEV, LAN, bands)
(CLEV, STL, bands)
(PI'TT, FRA, bands)
(PI'TT, FRE, bands)

(GARY, LAF, coi |l s)
( CLEV, DET, bands)
(CLEV, LAN, coi | s)
(CLEV, STL, coi | s)
(PITT, WN, bands)
(PITT, FRE, coi | s)

or

set ROUTES : =
GARY LAN coils
CLEV FRA bands
CLEV DET coils
CLEV WN coils
CLEV LAF bands
PI TT STL bands

GARY STL coils
CLEV FRA coils
CLEV LAN bands
CLEV STL bands
PI TT FRA bands
PI TT FRE bands

GARY LAF coils
CLEV DET bands
CLEV LAN coils
CLEV STL coils
PITT WN bands
PITT FRE coils ;

Using templates as before, but with three items in each template, we can break the speci-
fication into slices through one dimension by placing one * in each template. In the fol-
lowing example, we slice through the second dimension:

set ROUTES : =
(CLEV, *, bands)
(PITT, *, bands)

(GARY, *, coi | s)
(CLEV,*,co@Is)
(PITT, *, coils)

FRA DET LAN STL LAF
FRA WN STL FRE

LAN STL LAF
FRA DET LAN WN STL
FRE ;

Because the set contains no members with origin GARY and product bands, the template
( GARY, *, bands) isomitted.

When the set’s dimension is more than two, the slices can also be through more than
one dimension. A slice through two dimensions, in particular, naturally involves placing
two *'sin each template. Here we dice through both the first and third dimensions:

set ROUTES : =

(*, FRA, *) CLEV bands CLEV coils PITT bands

(*,DET,*) CLEV bands CLEV coils

(*, LAN,*) GARY coils CLEV bands CLEV coils

(*, WN,*) CLEV coils PITT bands

, STL, * GARY coils CLEV bands CLEV coils PITT bands
*
(*,FRE,*) PITT bands PITT coils
(*, LAF,*) GARY coils CLEV bands ;

Since these templates have two * ' s, they must be followed by pairs of components, which
are substituted from left to right to generate the set members. For instance the template
(*, FRA, *) followed by CLEV bands specifiesthat ( CLEV, FRA, bands) isamem-
ber of the set.
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Any of the above forms suffices for giving the values of parameter cost aswell. We
could write

param cost : =
[CLEV, *, bands] FRA 27 DET 9 LAN 12 STL 26 LAF 17
[PITT, *, bands] FRA 24 WN 13 STL 28 FRE 99

[GARY, *, coils] LAN 11 STL 16 LAF 8
[CLEV, *,coils] FRA 23 DET 8 LAN10 WN 9 STL 21
[PITT, *, coils] FRE 81 ;

or
param cost : =
[*,*, bands] CLEV FRA 27 CLEV DET 9 CLEV LAN 12
CLEV STL 26 CLEV LAF 17 PITT FRA 24
PITT WN 13 PITT STL 28 PITT FRE 99
[*,*,coils] GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 23 CLEV DET 8 CLEV LAN 10
CLEV WN 9 CLEV STL 21 PITT FRE 81
or

param cost : =
CLEV DET bands 9 CLEV DET coils 8 CLEV FRA bands 27
CLEV FRA coils 23 CLEV LAF bands 17 CLEV LAN bands 12
CLEV LAN coils 10 CLEV STL bands 26 CLEV STL coils 21
CLEV WN coils 9 GARY LAF coils 8 GARY LAN coils 11
GARY STL coils 16 PITT FRA bands 24 PITT FRE bands 99
PITT FRE coils 81 PITT STL bands 28 PITT WN bands 13 ;

By placing the *'s in different positions within the templates, we can dice one-
dimensionally in any of three different ways, or two-dimensionally in any of three differ-
ent ways. (Thetemplate[ *, *, *] would specify athree-dimensional list like

param cost : =
CLEV DET bands 9 CLEV DET coils 8 CLEV FRA bands 27

as aready shown above.)

More generally, a template for an n-dimensional set or parameter in list form must
have n entries. Each entry is either a legal set member or a *. Templates for sets are
enclosed in parentheses (like the tuples in set-expressions) and templates for parameters
are enclosed in brackets (like the subscripts of parameters). Following a template is a
series of items, each item consisting of one set member for each *, and additionally one
parameter value in the case of a parameter template. Each item defines an n-tuple, by
substituting its set members for the * s in the template; either this tuple is added to the set
being specified, or the parameter indexed by thistuple is assigned the value in the item.

A template appliesto all items between it and the next template (or the end of the data
statement). Templates having different numbers of * s may even be used together in the
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same data statement, so long as each parameter is assigned a value only once. Where no
template appears, atemplate of al * sis assumed.

Combined lists of sets and parameters

When we give data statements for a set and a parameter indexed over it, like

set PROD := bands coils plate ;
paramrate := bands 200 coils 140 plate 160 ;

we are specifying the set’s members twice. AMPL lets us avoid this duplication by
including the set’s name in the par amdata statement:

param PROD: rate := bands 200 coils 140 plate 160 ;

AMPL uses this statement to determine both the membership of PROD and the values of
rate.

Another common redundancy occurs when we need to supply data for several param-
eters indexed over the same set, such asr at e, profit and mar ket all indexed over
PRODin Figure 1-4a. Rather than write a separate data statement for each parameter,

paramrate
param profit
par am mar ket

bands 200 coils 140 plate 160 ;
bands 25 coils 30 plate 29 ;
bands 6000 coils 4000 plate 3500 ;

we can combine these statements into one by listing all three parameter names after the
keyword par am

param rate profit market :=
bands 200 25 6000 coils 140 30 4000 plate 160 29 3500 ;

Since AMPL ignores extra spaces and line breaks, we have the option of rearranging this
information into an easier-to-read table:

par am rate profit market :=
bands 200 25 6000
coils 140 30 4000
pl ate 160 29 3500 ;

Either way, we still have the option of adding the indexing set’s name to the statement,

param PROD: rate profit nmarket :=

bands 200 25 6000
coils 140 30 4000
pl ate 160 29 3500 ;

so that the specifications of the set and all three parameters are combined.
The same rules apply to lists of any higher-dimensional sets and the parameters
indexed over them. Thus for our two-dimensional example L1 NKS we could write
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param LI NKS: cost

CHAPTER 9

GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WN 9
CLEV STL 26 CLEV LAF 17 PITT FRA 24 PITT WN 13
PITT STL 28 PITT FRE 99
to specify the membership of LI NKS and the values of the parameter cost indexed over
it, or
param LINKS: cost linmt :=

GARY DET 14 1000

GARY LAN 11 800

GARY STL 16 1200

GARY LAF 8 1100

CLEV FRA 27 1200

CLEV DET 9 600

CLEV LAN 12 900

CLEV WN 9 950

CLEV STL 26 1000

CLEV LAF 17 800

PITT FRA 24 1500

PITT WN 13 1400

PITT STL 28 1500

PITT FRE 99 1200

to specify the values of cost and | i mi t together. The same options apply when tem-
plates are used, making possible further alternatives such as

param LI NKS: cost
[ GARY, *] DET 14
[CLEV, *] FRA 27
[PITT,*] FRA 24

and

par am

LI NKS

[ GARY, *] DET

[CLEV, *]

[PITT, *]

LAN
STL
LAF
FRA
DET
LAN
WN
STL
LAF
FRA
W N
STL
FRE

LAN 11 STL 16 LAF 8
DET 9 LAN12 WN 9 STL 26 LAF 17
WN 13 STL 28 FRE 99 ;

t limt =
1000
800
1200
1100
1200
600
900
950
1000
800
1500
1400
1500
1200 ;

Here the membership of the indexing set is specified along with the two parameters; for
example, the template [ GARY, *] followed by the set member DET and the values 14
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and 1000 indicates that ( GARY, DET) is to be added to the set LI NKS, that
cost [ GARY, DET] has the value 14, and that |i i t [ GARY, DET] has the value
1000.

As our illustrations suggest, the key to the interpretation of a par am statement that
provides values for several parameters or for a set and parameters is in the first line,
which consists of par amfollowed by a colon, then optionally the name of an indexing
set followed by a colon, then by alist of parameter names terminated by the : = assign-
ment operator. Each subsequent item in the list consists of a number of set members
equal to the number of * s in the most recent template and then a number of parameter
values equal to the number of parameterslisted in the first line.

Normally the parameters listed in the first line of a par amstatement are all indexed
over the same set. This need not be the case, however, as seen in the case of Figure 5-1.
For this variation on the diet model, the nutrient restrictions are given by

set M NREQ
set MAXREQ

param n_nmin {M NREQG >= O;
param n_nmax { MAXREG >= O;

so that n_mi n and n_ax are indexed over sets of nutrients that may overlap but that are
not likely to be the same.

Our sample data for this model specifies:

set MNREQ := A Bl B2 C CAL ;
set MAXREQ : = A NA CAL ;
par am nmn n_max :=

A 700 20000

C 700

B1 0

B2 0 .

NA 50000

CAL 16000 24000 ;

Each period or dot (. ) indicates to AMPL that no value is being given for the correspond-
ing parameter and index. For example, since M NREQ does not contain a member NA,
the parameter n_mi n[ NA] is not defined; consequently a. is given as the entry for NA
and n_mi n in the data statement. We cannot simply leave a space for this entry, because
AMPL will take it to be 50000: data mode processing ignores all extra spaces. Nor
should we put a zero in this entry; in that case we will get a message like

error processing param n_mn:
invalid subscript n_mn[’'NA"] discarded.

when AMPL first triesto accessn_m n, usualy at thefirst sol ve.
When we name a set in the first line of apar amstatement, the set must not yet have a
value. If the specification of parameter datain Figure 5-1 had been given as
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param NUTR n_min n_max :=

A 700 20000
C 700 .
Bl 0

B2 0 .
NA 50000

CAL 16000 24000 :

AMPL would have generated the error message

dietu.dat, line 16 (offset 366):
NUTR was defined in the nodel
context: param NUTR >>> @ <<< nmn n_nmax :=

because the declaration of NUTR in the model,
set NUTR = M NREQ uni on MAXREQ

definesit already as the union of M NREQ and MAXREQ.

9.3 Data in tables

The table format of data, with indices running along the left and top edges and values
corresponding to pairs of indices, can be more concise or easier to read than the list for-
mat described in the previous section. Here we describe tables first for two-dimensional
parameters and then for dlices from higher-dimensional ones. We also show how the cor-
responding multidimensional sets can be specified in tables that have entries of + or -
rather than parameter value entries.

AMPL also supports a convenient extension of the table format, in which more than
two indices may appear along the left and top edge. The rules for specifying such tables
are provided near the end of this section.

Two-dimensional tables

Data values for aparameter indexed over two sets, such as the shipping cost data from
the transportation model of Figure 3-1a

set ORI G
set DEST;
param cost { ORI G DEST} >= 0;

arevery naturally specified in atable (Figure 3-1b):

paramcost: FRA DET LAN WN STL FRE LAF :=
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20 ;
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The row labels give the first index and the column labels the second index, so that for
example cost [ " GARY", "FRA"] isset to 39. To enable AMPL to recognize this as a
table, a colon must follow the parameter name, while the : = operator follows the list of
column labels.

For larger index sets, the columns of tables become impossible to view within the
width of asingle screen or page. To deal with this situation, AMPL offers several alterna-
tives, which weillustrate on the small table above.

When only one of the index sets is uncomfortably large, the table may be transposed
so that the column labels correspond to the smaller set:

param cost (tr):
GARY CLEV PITT : =
FRA 39 27 24
DET 14 9 14
LAN 11 12 17
WN 14 9 13
STL 16 26 28
FRE 82 95 99
LAF 8 17 20 ;

The notation (t r) after the parameter name indicates a transposed table, in which the
column labels give the first index and the row labels the second index. When both of the
index sets are large, either the table or its transpose may be divided up in some way.
Since line breaks are ignored, each row may be divided across several lines:

param cost: FRA DET LAN WN

STL FRE LAF 1=
GARY 39 14 11 14

16 82 8

CLEV 27 9 12 9
26 95 17

PITT 24 14 17 13
28 99 20 ;

Or the table may be divided columnwise into several smaller ones:

paramcost: FRA DET LAN WN : =
GARY 39 14 11 14
CLEV 27 9 12 9
PITT 24 14 17 13

: STL FRE LAF :=
GARY 16 82 8
CLEV 26 95 17
PITT 28 99 20 ;

A colon indicates the start of each new sub-table; in this example, each has the same row
labels, but a different subset of the column |abels.

In the alternative formulation of this model presented in Figure 6-2a, cost is not
indexed over all combinations of members of ORI Gand DEST, but over a subset of pairs
from these sets:
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set LINKS within {OR G DEST};
param cost {LINKS} >= 0;

As we have seen in Section 9.2, the membership of LI NKS can be given concisely by a
list of pairs:
set LINKS : =
(GARY, *) DET LAN STL LAF

(CLEV, *) FRA DET LAN WN STL LAF
(PITT,*) FRA WN STL FRE ;

Rather than being given in asimilar list, the values of cost can be given in atable like
this:

paramcost: FRA DET LAN WN STL FRE LAF :=

GARY . 14 11 . 16 . 8
CLEV 27 9 12 9 26 . 17
PITT 24 . . 13 28 99 -

A cost value is given for al pairs that exist in LI NKS, while a dot (. ) serves as a
place-holder for pairs that are not in LI NKS. The dot can appear in any AMPL table to

indicate ‘‘no value specified here’’.
The set LI NKS may itself be given by atable that is analogous to the one for cost :

set LI NKS: FRA DET LAN WN STL FRE LAF :=

GARY - + + - + - +
CLEV + + + + + - +
PITT + - - + + + -

A + indicates a pair that isamember of the set, and a- indicates a pair that is not a mem-
ber. Any of AMPL’s table formats for specifying parameters can be used for sets in this

way.

Two-dimensional slices of higher-dimensional data

To provide data for parameters of more than two dimensions, we can specify the val-
ues in two-dimensional dlices that are represented as tables. Therulesfor using slices are
much the same as for lists. Asan example, consider again the three-dimensional parame-
ter cost defined by

set ROUTES within {ORl G DEST, PROD};
param cost {ROUTES} >= O0;

The values for this parameter that we specified in list format in the previous section as

param cost : =
[*,*, bands] CLEV FRA 27 CLEV DET 9 CLEV LAN 12
CLEV STL 26 CLEV LAF 17 PITT FRA 24
PITT WN 13 PITT STL 28 PITT FRE 99

[*,*,coils] GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 23 CLEV DET 8 CLEV LAN 10
CLEV WN 9 CLEV STL 21 PITT FRE 81
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can instead be written in table format as

param cost : =

[*,*, bands]: FRA DET LAN WN STL FRE LAF :=
CLEV 27 9 12 . 26 . 17
PITT 24 . . 13 28 99

[*,*,coils]: FRA DET LAN WN STL FRE LAF :=
GARY . . 11 . 16 . 8
CLEv 23 8 10 9 21 .
PITT . . . . . 81

Since we are working with two-dimensional tables, there must be two *’s in the tem-
plates. A table value'srow label is substituted for the first * , and its column label for the
second, unless the opposite is specified by (tr) right after the template. You can omit
any rows or columns that would have no significant entries, such as the row for GARY in
the[ *, *, bands] table above.

As before, adot in the table for any dice indicates a tuple that is not a member of the
table.

An analogous table to specify the set ROUTES can be constructed by putting a +
where each number appears:

set ROUTES : =

(*,*, bands): FRA DET LAN WN STL FRE LAF : =
CLEV  + + + - + - +
PITT + - - + o+ o+ -

(*,*,coils): FRA DET LAN WN STL FRE LAF : =
GARY - - + - + - +
CLEV + + + + + - -
PITT - - - - - + -

Since the templates are now set templates rather than parameter templates, they are
enclosed in parentheses rather than brackets.

Higher-dimensional tables

By putting more than one index to the left of each row or at the top of each column,
you can describe multidimensional data in a single table rather than a series of dlices.
WEe Il continue with the three-dimensional cost data to illustrate some of the wide variety
of possibilities.

By putting the first two indices, from sets ORI G and DEST, to the left, with the third
index from set PROD at the top, we produce the following three-dimensional table of the
costs:
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param cost: bands coils :=
CLEV FRA 27 23

CLEV DET 8 8
CLEV LAN 12 10
CLEV WN . 9

CLEV STL 26 21

PITT WN 13
PITT STL 28 .
PITT FRE 99 81

GARY LAN . 11
GARY STL . 16
GARY LAF . 8 ;

Putting only the first index to the left, and the second and third at the top, we arrive
instead at the following table, which for convenience we break into two pieces:

param cost: FRA  DET LAN  WN STL FRE LAF
bands bands bands bands bands bands bands : =

CLEV 27 9 12 . 26 . 17

PITT 24 . . 13 28 99 .

FRA DET LAN W N STL FRE LAF
coils coils coils coils coils coils coils :

GARY . . 11 . 16 . 8
CLEV 23 8 10 9 21 . .
PITT . . . . . 81

In general a colon must precede each of the table heading lines, whilea: = is placed only
after the last heading line.

The indices are taken in the order that they appear, first at the left and then at the top,
if no indication is given to the contrary. As with other tables, you can add the indicator
(tr) totranspose the table, so that the indices are till taken in order but first from the
top and then from the left:

param cost (tr): CLEV CLEV CLEV CLEV CLEV CLEV
. FRA DET LAN WN STL LAF :=
bands 27 8 12 . 26 17
coils 23 8 10 9 21

PITT PITT PITT PITT GARY GARY GARY
: FRA WN STL FRE LAN STL LAF :=
bands 24 13 28 99 . . .
coils . . . 81 11 16 8 ;

Templates can also be used to specify more precisely what goes where. For multidimen-
sional tables the template has two symbolsin it, * to indicate those indices that appear at
the left and : to indicate those that appear at the top. For example the template
[*,:,*] givesarepresentation in which the first and third indices are at the left and the
second is at the top:
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param cost : =
[*,:,] : FRA DET LAN WN STL FRE LAF :=
CLEV bands 27 9 12 . 26 . 17
CLEV coils 23 8 10 9 21 . .
PI TT bands 24 . . 13 28 99
PITT coils . . . . . 81 .
GARY coil s . . 11 . 16 . 8 ;

The ordering of the indices is always preserved in tables of this kind. The third index is
never correctly placed before the first, for example, no matter what transposition or tem-
plates are employed.

For parameters of four or more dimensions, the ideas of slicing and multidimensional
tables can be applied together provide an especialy broad choice of table formats. If
cost wereindexed over ORI G DEST, PROD, and 1. . T, for instance, then the templates
[*,:,bands,*] and[*,:,coils,*] could be used to specify two slices through
the third index, each specified by a multidimensional table with two indices at the left and
one at the top.

Choice of format

The arrangement of slices to represent multidimensional data has no effect on how the
data values are used in the model, so you can choose the most convenient format. For the
cost parameter above, it may be appealing to dice aong the third dimension, so that the
data values are organized into one shipping-cost table for each product. Alternatively,
placing all of the origin-product pairs at the left gives a particularly concise representa-
tion. Asanother example, consider ther evenue parameter from Figure 6-3:

set PROD; # products
set AREA {PROD}; # nmarket areas for each product
param T > O; # nunber of weeks

paramrevenue {p in PROD, AREA[p], 1..T} >= 0;

Because the index set AREA[ p] is potentially different for each product p, slices through
the first (PROD) dimension are most attractive. In the sample data from Figure 6-4, they
look like this:

param T := 4 ;

set PROD : = bands coils ;

set AREA[ bands] east north ;
set AREA[ coi |l s] east west export

param revenue =

[ bands, *, *]: 1 2 3 4 =
east 25.0 26.0 27.0 27.0
north 26.5 27.5 28.0 28.5

[coils,*, *]: 1 2 3 4 =
east 30 35 37 39
west 29 32 33 35

export 25 25 25 28 ;
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We have a separate revenue table for each product p, with market areas from AREA[ p]
labeling the rows, and weeksfrom 1. . T labeling the columns.

9.4 Other features of data statements

Additional features of the AMPL data format are provided to handle special situations.
We describe here the data statements that specify default values for parameters, that
define the membership of individual sets within an indexed collection of sets, and that
assign initial valuesto variables.

Default values

Data statements must provide values for exactly the parameters in your model. You
will receive an error message if you give avalue for a nonexistent parameter:

error processing param cost:
invalid subscript cost[’PITT,’ DET',’ coils’] discarded.

or if you fail to give avalue for a parameter that does exist:

error processing objective Total _Cost:
no value for cost[’' CLEV',’ LAN ,’coils’]

The error message appears the first time that AMPL tries to use the offending parameter,
usualy after you typesol ve.

If the same value would appear many times in a data statement, you can avoid speci-
fying it repeatedly by including a def aul t phrase that provides the value to be used
when no explicit value is given. For example, suppose that the parameter cost aboveis
indexed over all possibletriples:

set ORI G
set DEST;
set PROD;

param cost { ORI G DEST, PROD} >= O0;
but that a very high cost is assigned to routes that should not be used. This can be
expressed as

param cost default 9999 :=
[*,*, bands]: FRA DET LAN WN STL FRE LAF :=

CLEV 27 9 12 . 26 . 17
PITT 24 . . 13 28 99 .
[*,*,coils]: FRA DET LAN WN STL FRE LAF :=

GARY . . 11 . 16 . 8
CLEV 23 8 10 9 21 . .
PITT . . . . . 81
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Missing parameters like cost [ " GARY", " FRA", "bands" ], as well as those explic-
itly marked ‘‘omitted’’ by use of adot (like cost[" GARY", "FRA", "coil s"]), are
given the value 9999. In total, 24 values of 9999 are assigned.

The def aul t feature is especially useful when you want al parameters of an
indexed collection to be assigned the same value. For instance, in Figure 3-2, we apply a
transportation model to an assignment problem by setting all supplies and demands to 1.
The model declares

param supply {ORIG >= 0;
par am demand {DEST} >= O;

but in the data we give only a default value:

param supply default 1 ;
param denmand default 1 ;

Since no other values are specified, the default of 1 isautomatically assigned to every ele-
ment of suppl y and demand.

As explained in Chapter 7, a parameter declaration in the model may include a
def aul t expression. Thisoffersan aternative way to specify asingle default value:

param cost {ORI G DEST, PROD} >= 0, default 9999;

If you just want to avoid storing a lot of 9999's in a data file, however, it is better to put
the def aul t phrase in the data statement. The def aul t phrase should go in the
model when you want the default value to depend in some way on other data. For
instance, a different arbitrarily large cost could be given for each product by specifying:

par am huge_cost {PROD} > O;
param cost {ORIG DEST, p in PROD} >= 0, default huge_cost[p];

A discussion of def aul t 's relation to the = phrase in par am statements is given in
Section 7.5.

Indexed collections of sets

For an indexed collection of sets, separate data statements specify the members of
each set in the collection. In the example of Figure 6-3, for example, the sets named
AREA are indexed by the set PROD:;

set PROD; # products
set AREA {PROD}; # market areas for each product

The membership of these setsis given in Figure 6-4 by:

set PROD := bands coils ;
set AREA[ bands] := east north ;
set AREA[coils] := east west export

Any of the data statement formats for a set may be used with indexed collections of sets.
The only difference isthat the set name following the keyword set is subscripted.
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As for other sets, you may specify one or more members of an indexed collection to
be empty, by giving an empty list of elements. If you want to provide a data statement
only for those members of an indexed collection that are not empty, define the empty set
asthe default value in the model:

set AREA {PROD} default {};

Otherwise you will be warned about any set whose data statement is not provided.

Initial values for variables

Y ou may optionally assign initial values to the variables of a model, using any of the
options for assigning values to parameters. A variable's name stands for its value, and a
constraint’s name stands for the associated dual variable’' s value. (See Section 12.5 for a
short explanation of dual variables.)

Any par amdata statement may specify initial values for variables. The variable or
constraint name is simply used in place of a parameter name, in any of the formats
described by the previous sections of this chapter. To help clarify the intent, the keyword
var may be substituted for par amat the start of a data statement. For example, the fol-
lowing datatable givesinitial valuesfor the variable Tr ans of Figure 3-1a

var Trans: FRA DET LAN WN STL FRE LAF :=
GARY 100 100 800 100 100 500 200
CLEV 900 100 100 500 500 200 200
PITT 100 900 100 500 100 900 200 ;

As another example, in the model of Figure 1-4, a single table can give vaues for the
parametersr at e, prof it and mar ket , and initial values for the variables Make:

par am rate profit market Make :=
bands 200 25 6000 3000
coils 140 30 4000 2500
pl ate 160 29 3500 1500 ;

All of the previously described features for default values also apply to variables.

Initial values of variables (as well as the values of expressions involving these initial
values) may be viewed before you type sol ve, using thedi spl ay, pri nt orprintf
commands described in Sections 12.1 through 12.4. Initial values are aso optionaly
passed to the solver, as explained in Section 14.1 and A.18.1. After a solution is
returned, the variables no longer have their initial values, but even then you can refer to
the initial values by placing an appropriate suffix after the variable's name, as shown in
Section A.11.

The most common use of initial valuesis to give a good starting guess to a solver for
nonlinear optimization, which is discussed in Chapter 18.
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9.5 Reading unformatted data: the r ead command

Ther ead command provides a particularly simple way of getting values into AMPL,
given that the values you need are listed in a regular order in a file. The file must be
unformatted in the sense that it contains nothing except the values to be read — no set or
parameter names, no colons or : = operators.

In its simplest form, r ead specifies a list of parameters and a file from which their
values are to be read. The values in the file are assigned to the entries in the list in the
order that they appear. For example, if you want to read the number of weeks and the
hours available each week for our simple production model (Figure 4-4),

param T > O;
param avail {1..T} >= 0;

from afileweek_dat a. t xt containing

4
40 40 32 40

then you can give the command
read T, avail[1l], avail[2], avail[3], avail[4] <week_data.txt;

Or you can use an indexing expression to say the same thing more concisely and gener-
aly:

read T, {t in 1..T} avail[t] <week_data.txt;

The notation < filename specifies the name of a file for reading. (Analogoudly, > indi-
cateswriting to afile; see A.15.)
In general, ther ead command has the form

read itemlist < filename ;

with the item-list being a comma-separated list of items that may each be any of the fol-
lowing:
parameter

{ indexing } parameter
{ indexing } ( itemlist )

Thefirst two are used in our example above, while the third allows for the same indexing
to be applied to several items. Using the same production example, to read in values for

param prodcost {PRCD} >= 0;
param i nvcost {PROD} >= O;
param revenue {PROD, 1..T} >= 0;

from afile organized by parameters, you could read each parameter separately:

read {p in PROD} prodcost[p] < cost_data;
read {p in PROD} invcost[p] < cost_data;
read {p in PROD, t in 1..T} revenue[p,t] < cost_data;
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reading from file cost _dat a first al the production costs, then all the inventory costs,
and then all the revenues.
If the data were organized by product instead, you could say

read {p i n PROD}
(prodcost[p], invcost[p], {t in 1..T} revenue[p,t])
<cost _dat a;

to read the production and inventory costs and the revenues for the first product, then for
the second product, and so forth.

A parenthesized item-list may itself contain parenthesized itemtlists, so that if you
also want to read

param mar ket {PROD, 1..T} >= 0;

from the same file at the same time, you could say

read {p in PROD} (prodcost[p], invcost[p],
{t in 1..T} (revenue[p,t], market[p,t])) <cost_data;

in which case for each product you would read the two costs as before, and then for each
week the product’ s revenue and market demand.

As our descriptions suggest, the form of ar ead statement’ sitem-list depends on how
the data values are ordered in the file. When you are reading data indexed over sets of
strings that, like PROD, are not inherently ordered, then the order in which values are read
is the order in which AMPL is internally representing them. If the members of the set
came directly fromaset datastatement, then the ordering will be the same asin the data
statement. Otherwise, it is best to put an or der ed or or dered by phrase in the
model’s set declaration to ensure that the ordering is always what you expect; see Sec-
tion 5.6 for more about ordered sets.

An alternative that avoids knowing the order of the members in a set is to specify
them explicitly in the file that is read. As an example, consider how you might use a
r ead statement rather than a data statement to get the values from the cost parameter
of Section 9.4 that was defined as

param cost { ORI G DEST, PROD} >= 0, default 9999;

You could set up ther ead statement as follows:

param ntripl es integer;

paramic synbolic in ORI G
param jc synbolic in DEST,;
param kc synbolic in PROD,

read ntriples, {1..ntriples}
(ic, jc, ke, cost[ic,jc,kec]) <cost_data;

The corresponding filecost _dat a must begin something like this:
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18

CLEV FRA bands 27
PI TT FRA bands 24
CLEV FRA coils 23

with 15 more entries needed to give all 18 data values shown in the Section 9.4 example.

Strings in afile for the r ead command that include any character other than letters,
digits, underscores, period, + and - must be quoted, just as for data mode. However, the
r ead statement itself isinterpreted in model mode, o if the statement refers to any par-
ticular string, asin, say,

read {t in 1..T} revenue ["bands", t];

that string must be quoted. The filename following < need not be quoted unless it con-
tains spaces, semicolons, or nonprinting characters.

If aread statement contains no < filename, values are read from the current input
stream. Thus if you have typed the r ead command at an AMPL prompt, you can type
the values at subsequent prompts until all of the listed items have been assigned values.
For example:

anpl: read T, {t in 1..T} avail[t];
anmpl ? 4

anmpl ? 40 40 32 40

anpl : display avail;

avail [*] :=

140 240 332 440

The prompt changes from anpl ? back to anpl : when al the needed input has been
read.

The filename *‘- "’ (a literal minus sign) is taken as the standard input of the AMPL
process; thisisuseful for providing input interactively.

Further uses of r ead within AMPL scripts, to read values directly from script files or
to prompt users for values at the command line, are described in Chapter 13.

All of our examples assume that underlying sets such as ORI G and PROD have
aready been assigned values, through data statements as described earlier in this chapter,
or through other means such as database access or assignment to be described in later
chapters. Thusther ead statement would normally supplement rather than replace other
input commands. It is particularly useful in handling long files of data that are generated
for certain parameters by programs outside of AMPL.

Exercises

9-1. Section 9.2 gave a variety of data statements for a three-dimensional set, ROUTES. Con-
struct some other alternatives for this set as follows:
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(a) Use templates that look like ( CLEV, FRA, *) .

(b) Use templates that look like (*, *, bands) , with thelist format.

(c) Use templates that look like ( CLEV, *, *) , with the table format.

(d) Specify some of the set’s members using templates with one * , and some using templates with
two*’s.

9-2. Rewrite the production model data of Figure 5-4 so that it consists of just three data state-
ments arranged as follows:

The set PROD and parametersr at e, i nv0, pr odcost andi nvcost aregiveninonetable.
The set WEEKS and parameter avai | aregivenin onetable.

The parametersr evenue and mar ket are given in onetable.

9-3. For the assignment problem whose datais depicted in Figure 3-2, suppose that the only infor-
mation you receive about people's preferences for officesis as follows:

Coullard M239 M233 D241 D237 D239
Daskin D237 M233 M239 D241 D239 C246 C140

Hazen C246 D237 M233 M239 C250 C251 D239
Hopp D237 M233 M239 D241 C251 C250
Iravani D237 C138 C118 D241 D239

Linetsky M233 M239 C250 C251 C246 D237
Mehrotra D237 D239 M239 M233 D241 C118 C251
Nelson D237 M233 M239

Smilowitz  M233 M239 D239 D241 C251 C250 D237
Tamhane M239 M233 C251 C250 C118 C138 D237
White M239 M233 D237 C246

This means that, for example, Coullard’s first choice is M239, her second choice is M233, and so
on through her fifth choice, D239, but she hasn’t given any preference for the other offices.

To use this information with the transportation model of Figure 3-1a as explained in Chapter 3, you
must set cost[ " Coul | ard", "M239"] to 1, cost[" Coul | ard", "M233"] to 2, and sO
forth. For an office not ranked, such as C246, you can set cost [ " Coul | ard", " C246"] to 99,
to indicate that it is a highly undesirable assignment.

(a) Using the list format and a def aul t phrase, convert the information above to an appropriate
AMPL data statement for the parameter cost .

(b) Do the same, but with atable format.

9-4. Sections 9.2 and 9.3 gave a variety of data statements for a three-dimensional parameter,
cost, indexed over the set ROUTES of triples. Construct some other alternatives for this parame-
ter asfollows:

(8) Usetemplates that look like [ CLEV, FRA, *] .

(b) Use templates that look like[ *, *, bands] , employing the list format.

(c) Use templates that look like [ CLEV, *, *] , employing the table format.

(d) Specify some of the parameter values using templates with one *, and some using templates
with two *’s.

9-5. For the three-dimensiona parameter r evenue of Figure 6-4, construct aternative data
statements as follows:
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(a) Usetemplates that look like [ *, east , *] , employing the table format.
(b) Use templates that look like[ *, *, 1] , employing the table format.

(c) Use templates that look like [ bands, *, 1] .

9-6. Given the following declarations,

set ORIG
set DEST,;
var Trans {ORIG DEST} >= O;

how could you use a data statement to assign an initial value of 300 to al of the Tr ans variables?
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Database Access

The structure of indexed datain AMPL has much in common with the structure of the
relational tables widely used in database applications. The AMPL t abl e declaration lets
you take advantage of this similarity to define explicit connections between sets, parame-
ters, variables, and expressions in AMPL, and relational database tables maintained by
other software. The read tabl e and wite tabl e commands subsequently use
these connections to import data values into AMPL and to export data and solution values
from AMPL.

The relational tables read and written by AMPL reside in files whose names and loca-
tions you specify as part of the t abl e declaration. To work with these files, AMPL
relies on table handlers, which are add-ons that can be loaded as needed. Handlers may
be provided by the vendors of solvers or database software. AMPL has built-in handlers
for two simple relational table formats useful for experimentation, and the AMPL web site
provides a handler that works with the widely available ODBC interface.

This chapter begins by showing how AMPL entities can be put into correspondence
with the columns of relational tables, and how the same correspondences can be
described and implemented by use of AMPL’st abl e declaration. Subsequent sections
present basic features for reading and writing external relational tables, additional rules
for handling complications that arise when reading and writing the same table, and mech-
anisms for writing a series of tables or columns and for reading spreadsheet data. The
final section briefly describes some standard and built-in handlers.

10.1 General principles of data correspondence

Consider the following declarations from di et . nod in Chapter 2, defining the set
FOOD and three parameters indexed over it;

169
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set FOOD;

param cost {FOOD} > O;

param f _min {FOOD} >= O;

param f_max {j in FOOD} >= f_mn[j];

A relational table giving values for these components has four columns:

FOOD cost f mn f _max
BEEF 3.19 2 10
CHK 2.59 2 10
FI SH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTI'L 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10

The column headed FOOD lists the members of the AMPL set also named FOOD. Thisis
the table's key column; entries in a key column must be unique, like a set’s members, so
that each key value identifies exactly one row. The column headed cost gives the val-
ues of the likenamed parameter indexed over set FOOD; here the value of
cost [ "BEEF"] is specified as 3.19, cost["CHK"] as 259, and so forth. The
remaining two columns give values for the other two parameters indexed over FOOD.

The table has eight rows of data, one for each set member. Thus each row contains al
of the table's data corresponding to one member — one food, in this example.

In the context of database software, the table rows are often viewed as data records,
and the columns as fields within each record. Thus a data entry form has one entry field
for each column. A form for the diet example (from Microsoft Access) might look like
Figure 10-1. Datarecords, one for each table row, can be entered or viewed one at atime
by using the controls at the bottom of the form.

£ foods H=] k3
FOOD  [BEEF
cost I 218
f_min I 2
f_max | 10

Record! l(|4l| 1 FlrllHt-IofB 24

Figure 10-1: Accessdataentry form.
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Parameters are not the only entities indexed over the set FOOD in this example. There
are also the variables:

var Buy {j in FOOD} >=f nmin[j], <= f_max[j];
and assorted result expressions that may be displayed:

anpl : nodel diet. nod;
anpl : data diet?2a. dat;

anpl : sol ve;
M NCS 5.5: optinmal solution found.
13 iterations, objective 118.0594032

anpl : display Buy, Buy.rc, {j in FOOD} Buy[j]/f_max[j];

: Buy Buy.rc Buy[j]/f_max[j]

BEEF 5. 36061 8.88178e- 16 0. 536061

CHK 2 1.18884 0.2

Fl SH 2 1.14441 0.2

HAM 10 - 0. 302651 1

MCH 10 -0. 551151 1

MTL 10 -1.3289 1

SPG 9. 30605 0 0. 930605
2.73162 0.2

TUR 2

All of these can beincluded in the relational table for values indexed over FOOD:

FOCD cost f_mn f_max Buy BuyRC BuyFr ac
BEEF 3.19 2 10 5.36061 8.88178e-16 0.536061
CHK 2.59 2 10 2 1.18884 0.2

FI SH 2.29 2 10 2 1.14441 0.2

HAM 2.89 2 10 10 -0. 302651 1

MCH 1.89 2 10 10 -0.551151 1

MTL 1.99 2 10 10 -1.3289 1

SPG 1.99 2 10 9.30605 O 0. 930605
TUR 2.49 2 10 2 2.73162 0.2

Where the first four columns would typically be read into AMPL from a database, the last
three are results that would be written back from AMPL to the database. We have
invented the column headings Buy RC and Buy Fr ac, because the AMPL expressions for
the quantities in those columns are typically not valid column headings in database man-
agement systems. Thet abl e declaration provides for input/output and naming distinc-
tions such as these, as subsequent sections will show.

Other entities of di et . nod are indexed over the set NUTR of nutrients: parameters
n_m n and n_max, dua 