Writing .nl Files

David M. Gay
Optimization and Uncertainty Estimation

Sandia National Laboratories *
Albuquerque, NM

November 30, 2005

Abstract

AMPL® is a language and environment for describing mathematical
programming problems and solving them. The AMPL processor inter-
prets the AMPL language and invokes separate solvers to actually solve
problems. It conveys problem information to solvers in “.nl” files. This
paper describes the structure of a .nl file in enough detail to permit
writing such a file without using the AMPL processor.

1 Introduction

AMPL [2, 4] facilitates expressing, solving, and analyzing mathematical pro-
gramming problems, i.e., problems of the form

minimize f(z)
subject to ¢ <c¢(z) <u

in which z € R", f : R® — R! and ¢ : R® — R™, with f and c given alge-
braically and perhaps some x; restricted to integer values. AMPL communicates
with solvers by writing a “.nl” file, which contains a problem representation,
including the numbers of various kinds of variables, constraints, and objectives,
the linear terms of constraints and objectives, and expression graphs for the non-
linear parts of constraints, objectives, and “defined variables” (named common
expressions).

To write a .nl file manually, it is perhaps simplest to invoke the fg_write()
routine in the AMPL/solver interface library (hereafter called the ASL, docu-
mented in [5], with source freely available from netlib, as described in [5]). This
could be complicated from, say, Java, as the ASL is only designed for direct

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under contract DE-AC04-94 AL85000.
This document is released as SAND2005-7907P.



set I =1..9;
var x{I};
function myfunc;

var t{i in 1..3}
var u{i in 1..2}

x[11°2 + 1 + sum{j in 8..9} (i+j)*x[j];
x[7+i]17°2 + 2 + sinh(x[1] + 2*t[2] + 6*x[6]);

maximize zip: if t[2] >= O then -t[2]°3 else -t[2]"2;
minimize zap: sin(t[1]) + cos(2*t[2]) + 4*x[4] + 5*x[5] + x[6]°2 + x[7]"2;
minimize zot: cosh(<<1,2;3,4,5>>x[6]);

cl: t[2] + sin(t[3]) <= 4;

c2: x[5] + cos(x[6]) >= 3;

c3: sum{i in 3..7} i*x[i] = 1;

c4: 4.3 <= x[5] + myfunc(t[2], x[3]1*x[6], "some string") <= 15.5;
b45{i in 4..5}: x[i] >= i;

bl: x[1] <= 3.5;

b2: -1 <= x[2] <= 2;

b3{i in 8..9}: 0 <= x[i] <= 0.1%i;

lc{i in 1..2}: x[6] + x[7] >= 2.5 ==> (x[5] + x[6]1°2)"2 + u[i] <= 35;

n n n n n n oo oo
ct ct c o F F o o

suffix zork;

let{i in 2.._nvars} _var[i].zork := i;
option nl_comments 1, auxfiles rc;
write gsilly;

Figure 1: sample AMPL Model and commands: silly.amp

use with C and C++. Java could use the Java Native Interface (JNI) to talk
directly with the ASL, but that would make it necessary to construct expression
graphs in the right form. The rest of this document summarizes how to write a
.nl file “from scratch”.

Each .nl file begins with a header that is discussed in the next section, fol-
lowed by segments of various kinds. Several kinds of segments include expression
graphs, which are described in §3. A description of the various segments then
appears in §4.

Seeing examples may prove helpful. Figure 1 shows an AMPL model and
commands (file silly.amp) that give rise to a .nl file, silly.nl, portions of
which we use in illustrations below. The write command at the end of Figure 1
causes the writing of an ASCII silly.nl. The preceding option command
requests (via “nl_comments 1”) comments in silly.nl. The comments are the
text in many of the tables below, such as Table 3, that begins with # and extends
to the end of the line. The option command also requests (via “auxfiles
rc”) the writing of auxiliary files silly.row and silly.col with the AMPL
names of the constraints, objectives and variables. (The suffixes .row and .col
hearken back to linear programming, where variables correspond to columns of
the constraint matrix and constraints and objectives to rows. Solvers ordinarily



silly.row | silly.col
cl x[2]
c2 x[6]
c4 x[7]
c3 x[8]
1c[1] x[9]
1c[2] x[3]
zap x[5]
zot x[1]
x [4]

Table 1: .row and .col files from silly.amp.

g3 1 1 0 # problem silly

943112 # vars, constraints, objectives, ranges, eqns, lcons
3 3 # nonlinear constraints, objectives

0 O # network constraints: nonlinear, linear

7 8 5 # nonlinear vars in constraints, objectives, both

010 1 # linear network variables; functions; arith, flags

0 000 O # discrete variables: binary, integer, nonlinear (b,c,o0)

17 5 # nonzeros in Jacobian, gradients
5 4 # max name lengths: constraints, variables
2 0031 # common exprs: b,c,o0,cl,ol

Figure 2: header of silly.nl

do not use the .row and .col files, so AMPL does not write them by default,
but the names in them can be useful in error messages.) Table 1 shows the
contents of silly.row and silly.col, which show how AMPL has permuted
the constraints and variables.

2 Header

The first 10 lines of a .n1 file are a header that gives problem statistics in ASCII
format. The rest is either more ASCII text or a binary equivalent (as indicated
on the .nl file’s first line). For example, Figure 2 shows the header that results
from silly.amp (Figure 1).

The first character of a .nl file is ’g’ if the whole file is in ASCII format and
'b’ if the file is in binary format (after the first 10 lines). AMPL always writes
explanatory comments — text starting with ’#’ — in the header, regardless of
the setting of option nl_comments, but such comments are not required and are
ignored by the ASL. The numbers on the first line matter to AMPL; for other
uses, it is best simply to supply the ones shown above.

The rest of the header gives problem statistics, as described in the comment



name meaning

n_var  number of variables

n.con number of algebraic constraints (1)
n_obj number of objectives

n_lcon number of logical constraints

Table 2: names of some header statistics.

on each line. The ASL considers the i-th algebraic constraint to be in the form
b < ci(x) <y (1)

where £; and u; are constants, possibly with ¢; = —oo and/or u; = 400, and
ci(z) is the body of the constraint. Equations are constraints with ¢; = u;, and
range constraints are those with —co < ¢; < u; < +00. The second line gives the
numbers of variables, constraints, and objectives (of which there can be none,
one, or several), and the numbers of range and equality constraints; both are
included in the total number of algebraic constraints. Variables are ordered as
described in Tables 3 and 4 of [5], because some solvers treat linear constraints
and variables specially. You only need to worry about such permutations if you
are using a solver that cares about them.

Logical constraints are an AMPL extension described in [3]. The final integer
on line 2 of Figure 2 is the number of logical constraints, which are not included
in the count of algebraic constraints. AMPL omits this final number if no logical
constraints are present. In Figure 1, 1c[1] and 1c[2] are logical constraints.

For simplicity, the descriptions that follow assume an ASCII .n1 file. Binary
files consist of corresponding sequences of int, double, and string values, where
a string consists of an int length followed by that many characters. (The
newlines mentioned below do not appear in binary .nl files, and the decimal
integers and floating-point values mentioned below become binary int (4 byte)
and double (8 byte) values, respectively.)

Below, it will be convenient to refer to some of the problem statistics from
the .nl header. For consistency with the ASL, we use the names summarized
in Table 2 for these statistics.

3 Expression Graphs

Expression graphs in a .nl file convey the nonlinear parts of constraints, ob-
jectives, and defined variables. Expression graphs are expressed in Polish prefix
notation: operator followed by operands. A numeric constant is denoted by

[}

n” (the operator) followed by a decimal floating-point value (the operand, a
possibly signed decimal string possibly followed by “e€” and a signed integer).
A reference to variable ¢ is denoted by “v” followed by a decimal integer; for

0 <i < n_var, vi is the value of a decision variable that the solver manipulates;



f0 3 #myfunc
v10 #t[2]
nl.23

hll:some string

Table 3: .nl fragment from myfunc(t[2], 1.23, "some string")

n  oper. | m  oper. | m  Oper.

13 floor 14 ceil 15 abs
16 neg 34 not 37 tanh
38 tan 39 sqrt 40 sinh
41  sin 42 logl0 | 43 log
44 exp 45 cosh | 46 cos
47 atanh | 49 atan | 50 asinh
51 asin 52 acosh | b3 acos

Table 4: unary operators.

for larger 4, vi is the value of a defined variable. A call on an imported function
is denoted by “f” followed by two decimal integers, ¢ and n, which are the func-
tion number 7 given in a previous F segment and the number of arguments n
passed in this call. Then come n expressions for the arguments. Among these
argument expressions can be strings, introduced by “h” followed by a decimal
integer length ¢ and a colon, followed by the ¢ characters in the string. For ex-
ample, assuming the declarations in Figure 1, Table 3 shows the .nl fragment
that would result from the invocation
myfunc(t[2], 1.23, "some string")

An operation on the results of other operations (including variables, nu-
meric constants, imported-function evaluations) is introduced by “o” followed
by a decimal integer n (the operation number) followed by expression graphs
for the operation’s operands. Operations fall into several classes, described be-
low. Class numbers are given in solver interface file op_type.hd [6], which also
mentions some classes that do not appear in .nl files, but are used by the .nl
file readers of [5].

Unary operators (class 1) take one operand and are summarized in Table 4.
The not operator turns zero into 1 and nonzero values into zero. Neg is the
unary “minus” operator, i.e., negation. Log is the natural logarithm, while
log10 is the base-10 logarithm. The other unary operators are for standard
mathematical functions. For example, the invocation cos(x[6]) that appears
in constraint c2 of Figure 1 gives rise to the .nl fragment shown in Table 5.

Binary operators (class 2) and are summarized in Table 6 and, as the name
suggests, take two operands. The plus, minus, mult, and div operators are the



046 #cos
vi #x [6]

Table 5: .nl fragment from cos(x[6])

n  oper. | n  oper. | m  oper.
0 plus 1 minus | 2 mult

3 div 4  rem 5 pow

6 less 20 or 21 and

22 1t 23 le 24 eq

28 ge 29 gt 30 ne

48 atan2 | 55 intdiv | 56 precision
57 round | 58 trunc | 73 iff

Table 6: binary operators.

usual arithmetic +, —, x, =+, i.e., addition, subtraction, multiplication, and
division operators. Intdiv is for integer division, i.e., the integer that agrees in
sign with the quotient of the left (first) and right (second) operands and is the
largest such integer in absolute value that does not exceed the absolute value of
the quotient. Rem is the remainder operation, and pow is exponentiation, rais-
ing the left operand to the power of the right operand. The or operator returns
1 if either operand is nonzero and returns zero otherwise. Analogously, the and
operator returns 1 if both operands are nonzero and returns zero otherwise.
The It, le, eq, ge, gt, and ne operators are the comparisons <, <, =, >, >, and
=, respectively, returning 1 if the indicated relation holds between the left and
right operand, and zero otherwise. The iff operator returns 1 if both operands
are nonzero or both are zero and returns zero otherwise. The precision operator
rounds the left operand to the number of significant decimal digits given by the
right operand, and the trunc and round operators truncate or round the first
operand after the number of decimal places after (or, for negative right operand,
before) the decimal point specified by the right operand.

As an example of binary operations, Table 7 shows the expression graph for
(x[5] + x[6]1°2)"2, which appears in the 1c constraints of Figure 1.

Classes 3, 6, and 11 are for n-ary operators, which take several operands.
The class numbers vary to help the .nl readers arrange derivative computa-
tions, but they all have the same form in a .nl file: an integer n follows the
operation number. After the integer come n expression graphs, one for each
operand. Table 8 summarizes the n-ary operations. The min, maz, and sum
operators are self-explanatory. Count returns the number of nonzero operands.
The numberof operators return the number of values among the second and sub-
sequent operands that equal the first; numberof has numeric arguments, while
numberofs has string arguments (which can only be constants or the results of



o5 #-

o0 # +
v6 #x[5]
o5 #-

vi #x[6]
n2

n2

Table 7: .nl fragment from (x[5] + x[6]°2)"2

n  oper. | m  oper. n  oper.
11 min 12 max 54 sum

59 count | 60 numberof | 61 numberofs
70 and 71 or 74 alldiff

Table 8: n-ary operators.

if-then-else expressions). The n-ary and returns 1 if all operands are nonzero
and zero otherwise; the n-ary or returns 1 if any operand is nonzero and zero
otherwise. The alldiff operator returns 1 if all operands are distinct and 0 if at
least two coincide.

As an example of the n-ary sum operator, Table 9 shows a fragment of
silly.nl corresponding to the sinh(...) term in objective zot of Figure 1.

Class 4 is for piecewise-linear terms that AMPL did not linearize. They arise
only as operands to nonlinear functions or in objectives or constraints when one
specifies “option pl_linearize 0;” before writing a .nl file. Piecewise-linear
terms have operation number 64 and consist of an integer n for the number of
slopes, followed by 2n—1 floating-point numbers, which are alternating slope and
breakpoint values (starting and ending with a slope). Following these numeric

040 #sinh
ob4 #sumlist
3

v7 #x[1]

02 #x

n2

v10 #t [2]

02 #x*

né6

v1 #x[6]

Table 9: .nl fragment from sinh(x[1] + 2xt[2] + 6*x[6])



045 #cosh
064 #<<LO>>
3

n3

nl

n4

n2

nb5

vl #x[6]

Table 10: .nl fragment from cosh(<<1,2;3,4,5>>x[6])

n  oper. | n  oper. | n  oper.

35 if 65 ifs 72 implies

Table 11: n-ary operators.

values is a variable reference, i.e., a v followed by an integer variable number
number; the piecewise-linear expression is applied to the indicated variable (see
[4]). For instance, Table 10 shows a fragment of silly.nl corresponding to the
cosh(...) term in objective zot of Figure 1.

Finally, class 5 is for if-then-else expressions. Table 11 summarizes the rele-
vant operations. All are followed by three operands, the first of which is a logical
expression (the result of one of the above operators that is specified to return
zero or 1; in the ASL, these operators return floating-point values). The sec-
ond and third operands are expression graphs for the then and else expressions,
both giving results of the same type. The if operator has numeric then and else
expressions, the ifs has string values for its then and else expressions, and the
implies operator has logical expressions for its then and else expressions.

As an example of an if-then-else expression, Table 12 shows the objective
segment in silly.nl corresponding to objective zip of Figure 1.

4 Segments

Following the header in a .nl file are various segments, introduced by one of
the distinguishing key letters shown in Table 13. The segments only appear if
nonempty and generally appear in the order shown above, though other orders
are possible, subject only to the restrictions noted in Table 13. Some segments
(the ones with lower-case key letters: d, x, r, b, k) appear at most once. The
others appear as often as necessary. For example, if the solver sees three alge-
braic constraints, then there will be three C segments. G and J lines supply
linear terms for the corresponding objectives and algebraic constraints.

The V, C, L, and O segments contain expression graphs in Polish prefix



notation, as discussed in §3. Explanations of each kind of segment follow, in the
order shown in Table 13.

F segments provide information about imported functions and consist of
“F” followed by three integers, say ¢, j, and k, and the name of the function
(an unquoted string), where 4 is the function number (0 for the first), j is 1 if
string arguments are allowed and is 0 otherwise, and k indicates the number of
arguments: if £ < 0, then the function has at least —(k + 1) arguments, and if
k > 0, then the function has exactly k arguments. For example, the segment
for function myfunc in Figure 1 consists of the single line

FO 1 -1 myfunc

S segments convey declared and implicit suffixes. Implicit suffixes include
values AMPL uses for linearizing nonconvex piecewise-linear terms (which re-
quires a solver that handles integer variables) and .sstatus values for convey-
ing basis information. The latter are usually only nonzero after a preliminary
“solve” by a simplex-based linear-programming solver or by a nonlinear solver
that similarly uses basis information, such as MINOS. Declared suffixes convey
auxiliary information to some solvers; for example, some integer-programming
solvers get branching priorities from .priority suffix values. Other solvers
make no use of suffix values; there is no need to provide suffix values that will
not be used. In general, solvers look only for suffixes they care about and ignore
any others that might be present.

Following the “S” that introduces a suffix segment are two integers, k and n,
and the name of the suffix (a string value containing no white space, followed by
a newline). The first two bits of k indicate the kind of entity to which the suffix
applies, as indicated in Table 14 (in which the first two bits of k are called Kind;
in C, these bits are computed as “Kind = k & 3”). The “4” bit of k indicates
whether the suffix is real (i.e., double) valued or integer valued: (k&4) # 0 —
real valued. Only nonzero suffix values are transmitted; n is the number of such
values. Following the “S” line are n lines of the form

1 V;
where i is the offset of suffix value v;. (Thus a suffix value on the first variable
or constraint would have ¢ = 0.)

As an example, Table 15 shows the S segment for suffix zork of Figure 1.

V segments provide definitions of defined variables, which amount to named
common subexpressions. Defined variables that appear in more than one con-
straint or objective come first, before any C, L or O segments. V segments for
defined variables that appear only in a single constraint or objective come just
before the C, L or O segment for the constraint or objective.

Three integers follow the “V” that introduces a V segment: i, j, k. The
first, ¢, is the variable number for this defined variable: in subsequent expression
graphs vi will denote the value of this defined variable. The second integer, j,
is the number of linear terms that immediately follow, and the third, &, is O
if vi appears in more than one constraint or objective; if it only appears in
constraint m (with m = 0 for the first constraint), then & = m + 1; and if vi
only appears in objective m (0 for the first), then ¥ = n_con + n_lcon +m



(see Table 2). Immediately after the “Vi j k” line come j lines of the form
Pe e

where py is an integer with 0 < I, < n_var and ¢, is a floating-point number

(such as 1.23 or -4.56e7). These j lines represent Z;;é ¢¢ - Vp,. The value v; of

vi is this sum plus the value of the expression in the following expression graph

(53).

To illustrate V segments, Table 16 shows the V segments for defined variable
t[2] of Figure 1, which AMPL has split into two parts, the purely nonlinear
part and the complete t[2] (denoted v9 and V10, respectively, in silly.nl).
AMPL does this for efficiency, to allow combining linear contributions where
appropriate, but such splitting is not required.

The body of algebraic constraint i, 0 < i < n_con, is introduced by a line
of the form Ci, which is followed by an expression graph for the nonlinear part
of the body. The linear part comes later, in the J segment for this constraint,
and the complete constraint body is the linear part plus the nonlinear part.
Similarly, logical constraint i, 0 < ¢ < n_lcon, is introduced by a line of the
form Li, followed by an expression graph for the complete logical constraint.
And objective i, 0 < ¢ < n_obj, is introduced by a line of the form “0i o7,
followed by an expression graph for the nonlinear part of the objective, with
o = 0 if the objective is to be minimized and o = 1 if it is to be maximized.
In analogy with constraints, the linear part of the objective is conveyed in the
subsequent G segment corresponding to the objective, and the total objective
value is the linear part plus the nonlinear part. Table 12 illustrates the O
segment for objective zip of Figure 1.

Initial values for the dual and primal variables are conveyed in d and x
segments. The number of entries in each segment, say m, immediately follows
the introductory “d” or “x”. Then come m (offset, value) pairs, where the
integer offset is zero for the first constraint or variable.

Ranges for the constraints are conveyed in an r segment. Following the
“r” are n_con lines, each consisting of an integer followed by zero, one, or two
floating-point numbers, or, for complementarity constraints, two integers, as
indicated in Table 17. For a complementarity constraint to hold, if v;_; is at
its lower bound, then body > 0; if v;_1 is at its upper bound, then body < 0;
and if v;_1 is strictly between its bounds, then body = 0. The integer k in a
complementarity constraint line indicates which bounds on v;_; are finite: 1
and 3 imply a finite lower bound; 2 and 3 imply a finite upper bound; 0 (which
should not occur) would imply no finite bounds, i.e., body = 0 must always hold.

Table 18 is an example r segment, corresponding as usual to Figure 1.

Bounds on the variables are conveyed in a b section, which has n_var lines
after the initial “b”. These lines are as in Table 17, with the variable in place
of “body” and with no complementarity constraints (i.e., lines starting with 5).

It should be clear that constraints and objectives are similar, except that
constraints have ranges, i.e., upper and lower bounds, associated with them.
Another distinction is that .nl files contain extra information about the sparsity
of constraints, to facilitate computing a Jacobian matrix stored columnwise,
since many nonlinear solvers want to see Jacobians stored this way. The k

10



segment contains this extra information. Following “k” is the integer n_var — 1
followed by that many integers, the cumulative sums of the numbers of nonzeros
in the first n_var — 1 columns of the Jacobian matrix.

To illustrate k segments, Table 19 shows the sparsity of the Jacobian matrix
corresponding to silly.amp (Figure 1), and Table 20 shows the corresponding
k section.

For each constraint or objective, a corresponding J or G segment indicates
which variables appear in the constraint or objective and supplies coefficients
for the linear part of the constraint’s body or for the objective. The initial J
or G is followed by two integers, ¢ and k, where ¢ indicates the constraint or
objective (0 for the first) and &k the number of variables on which it depends.
Following these integers are k (offset, coefficient) pairs (j, ¢) indicating variable
j and linear coefficient c.

As a final example, Table 21 shows the J segments for the first two constraints
(c1 and c2) in Figure 1.

5 Making Your Own Examples

You may find it helpful to use AMPL to write your own sample .nl files. Stu-
dent versions of AMPL suffice for this purpose and are available from platform-
specific subdirectories of netlib’s ampl/student directory [1].

References

[1] Netlib’s ampl/student directory. http://www.netlib.org/ampl/student
or http://netlib.bell-labs.com/netlib/ampl/student.

[2] R. Fourer, D. M. Gay, and B. W. Kernighan. A modeling language for math-
ematical programming. Management Science, 36(5):519-554, 1990. (The
URL is for the longer technical report cited in the Management Science

paper.).
obert Fourer an avl . Gay. Extending an algebraic modeling lan-
3] Robert Fi d David M. G E di lgebrai deling 1

guage to support constraint programming. INFORMS Journal on Comput-
ing, 14(4):322-344, 2002.

[4] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Model-
ing Language for Mathematical Programming. Duxbury Press/Brooks/Cole
Publishing Co., second edition, 2003.

[5] David M. Gay. Hooking your solver to AMPL. Numerical Analysis
Manuscript No. 93-10, AT&T Bell Laboratories, Murray Hill, NJ, 1993,
revised 1997. http://www.ampl.com/REFS/hooking2.ps.gz.

[6] AMPL/solver interface library source file op_type.hd.  Available as
http://www.netlib.org/ampl/solvers/op\_type.hd or http://netlib.
bell-labs.com/netlib/ampl/solvers/op\_type.hd.gz.

11



00 1 #zip
035 # if
028 # >=
v10 #t[2]
n0

016 #-
o5 #°
v10 #t [2]
n3

ol6 #-
o5 #-
v10 #t [2]
n2

Table 12: objective segment in silly.nl for objective zip

Key letter
F

<

Duixor a0

Description

imported function description

suffix values

defined variable definition (must precede V,C,L,0
segments where used)

algebraic constraint body

logical constraint expression

objective function

dual initial guess

primal initial guess

bounds on algebraic constraint bodies (“ranges”)
bounds on variable

Jacobian column counts (must precede all J segments)
Jacobian sparsity, linear terms

Gradient sparsity, linear terms

Table 13: segment types.

Kind Entity
0 variables
1 constraints
2 objectives
3 problem

Table 14: kinds of suffixes.

12




SO 8 zork

oo WN - O
01 WO 00NN

Table 15: S segment for suffix zork of silly.amp

V9 0 0 #nl (t[2])
05 #-

vO0 #x[2]

n2

Vio 2 0 #t [2]

3 10

4 11

o0 # +

v9 #nl(t[2])
nl

Table 16: V segments for t[2] of silly.amp

Line Interpretation

0f4u £<body<u

1w body < u

2/ ¢ < body

3 no constraints on body

4c body = ¢

5kt body complements variable v; 1

Table 17: Lines in r segments.

#4 ranges (rhs’s)

Table 18: r segment from silly.nl

13



X X
X X X X X
X X X X X

Table 19: Jacobian matrix sparsity for silly.amp

k8

o »

10
13
16
16

#intermediate Jacobian column lengths

Table 20: k section from silly.nl

Table 21: J segments for c1 and ¢2 in silly.nl

14




